Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 105030, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442239

RESUMO

Human growth hormone (hGH) is a pituitary-derived endocrine protein that regulates several critical postnatal physiologic processes including growth, organ development, and metabolism. Following adulthood, GH is also a regulator of multiple pathologies like fibrosis, cancer, and diabetes. Therefore, there is a significant pharmaceutical interest in developing antagonists of hGH action. Currently, there is a single FDA-approved antagonist of the hGH receptor (hGHR) prescribed for treating patients with acromegaly and discovered in our laboratory almost 3 decades ago. Here, we present the first data on the structure and function of a new set of protein antagonists with the full range of hGH actions-dual antagonists of hGH binding to the GHR as well as that of hGH binding to the prolactin receptor. We describe the site-specific PEG conjugation, purification, and subsequent characterization using MALDI-TOF, size-exclusion chromatography, thermostability, and biochemical activity in terms of ELISA-based binding affinities with GHR and prolactin receptor. Moreover, these novel hGHR antagonists display distinct antagonism of GH-induced GHR intracellular signaling in vitro and marked reduction in hepatic insulin-like growth factor 1 output in vivo. Lastly, we observed potent anticancer biological efficacies of these novel hGHR antagonists against human cancer cell lines. In conclusion, we propose that these new GHR antagonists have potential for development towards multiple clinical applications related to GH-associated pathologies.


Assuntos
Hormônio do Crescimento Humano , Receptores da Prolactina , Humanos , Proteínas de Transporte/química , Linhagem Celular , Hormônio do Crescimento Humano/antagonistas & inibidores , Hormônio do Crescimento Humano/química , Prolactina/química , Receptores da Prolactina/antagonistas & inibidores , Receptores da Prolactina/química , Receptores da Somatotropina/química , Polietilenoglicóis/química
2.
Endocr Relat Cancer ; 30(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283510

RESUMO

Despite landmark advances in cancer treatments over the last 20 years, cancer remains the second highest cause of death worldwide, much ascribed to intrinsic and acquired resistance to the available therapeutic options. In this review, we address this impending issue, by focusing the spotlight on the rapidly emerging role of growth hormone action mediated by two intimately related tumoral growth factors - growth hormone (GH) and insulin-like growth factor 1 (IGF1). Here, we not only catalog the scientific evidences relating specifically to cancer therapy resistance inflicted by GH and IGF1 but also discuss the pitfalls, merits, outstanding questions and the future need of exploiting GH-IGF1 inhibition to tackle cancer treatment successfully.


Assuntos
Hormônio do Crescimento Humano , Neoplasias , Humanos , Hormônio do Crescimento Humano/uso terapêutico , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias/tratamento farmacológico , Hormônio do Crescimento/metabolismo
3.
Pituitary ; 26(4): 437-450, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37353704

RESUMO

BACKGROUND: Lifelong reduction of growth hormone (GH) action extends lifespan and improves healthspan in mice. Moreover, congenital inactivating mutations of GH receptor (GHR) in mice and humans impart resistance to age-associated cancer, diabetes, and cognitive decline. To investigate the consequences of GHR disruption at an adult age, we recently ablated the GHR at 6-months of age in mature adult (6mGHRKO) mice. We found that both, male and female 6mGHRKO mice have reduced oxidative damage, with males 6mGHRKO showing improved insulin sensitivity and cancer resistance. Importantly, 6mGHRKO females have an extended lifespan compared to controls. OBJECTIVE AND METHODS: To investigate the possible mechanisms leading to health improvements, we performed RNA sequencing using livers from male and female 6mGHRKO mice and controls. RESULTS: We found that disrupting GH action at an adult age reduced the gap in liver gene expression between males and females, making gene expression between sexes more similar. However, there was still a 6-fold increase in the number of differentially expressed genes when comparing male 6mGHRKO mice vs controls than in 6mGHRKO female vs controls, suggesting that GHR ablation affects liver gene expression more in males than in females. Finally, we found that lipid metabolism and xenobiotic metabolism pathways are activated in the liver of 6mGHRKO mice. CONCLUSION: The present study shows for the first time the specific hepatic gene expression profile, cellular pathways, biological processes and molecular mechanisms that are driven by ablating GH action at a mature adult age in males and females. Importantly, these results and future studies on xenobiotic metabolism may help explain the lifespan extension seen in 6mGHRKO mice.


Assuntos
Receptores da Somatotropina , Xenobióticos , Humanos , Adulto , Camundongos , Masculino , Feminino , Animais , Lactente , Xenobióticos/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Fígado/metabolismo , Longevidade/genética , Expressão Gênica , Hormônio do Crescimento/metabolismo
4.
Front Oncol ; 12: 936145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865483

RESUMO

Knockdown of GH receptor (GHR) in melanoma cells in vitro downregulates ATP-binding cassette-containing (ABC) transporters and sensitizes them to anti-cancer drug treatments. Here we aimed to determine whether a GHR antagonist (GHRA) could control cancer growth by sensitizing tumors to therapy through downregulation of ABC transporters in vivo. We intradermally inoculated Fluc-B16-F10 mouse melanoma cells into GHA mice, transgenic for a GHR antagonist (GHRA), and observed a marked reduction in tumor size, mass and tumoral GH signaling. Moreover, constitutive GHRA production in the transgenic mice significantly improved the response to cisplatin treatment by suppressing expression of multiple ABC transporters and sensitizing the tumors to the drug. We confirmed that presence of a GHRA and not a mere absence of GH is essential for this chemo-sensitizing effect using Fluc-B16-F10 allografts in GH knockout (GHKO) mice, where tumor growth was reduced relative to that in GH-sufficient controls but did not sensitize the tumor to cisplatin. We extended our investigation to hepatocellular carcinoma (HCC) using human HCC cells in vitro and a syngeneic mouse model of HCC with Hepa1-6 allografts in GHA mice. Gene expression analyses and drug-efflux assays confirm that blocking GH significantly suppresses the levels of ABC transporters and improves the efficacy of sorafenib towards almost complete tumor clearance. Human patient data for melanoma and HCC show that GHR RNA levels correlate with ABC transporter expression. Collectively, our results validate in vivo that combination of a GHRA with currently available anti-cancer therapies can be effective in attacking cancer drug resistance.

5.
Nat Rev Endocrinol ; 18(9): 558-573, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750929

RESUMO

Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.


Assuntos
Doenças Cardiovasculares , Fibrose/metabolismo , Hormônio do Crescimento Humano/metabolismo , Neoplasias , Animais , Doenças Cardiovasculares/metabolismo , Criança , Nanismo Hipofisário/metabolismo , Hormônio do Crescimento , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Neoplasias/metabolismo
6.
Growth Horm IGF Res ; 64: 101460, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35490602

RESUMO

OBJECTIVE: Chagas disease (CD) is caused by the protozoan parasite, Trypanosoma cruzi. It affects 7 to 8 million people worldwide and leads to approximately 50,000 deaths per year. In vitro and in vivo studies had demonstrated that Trypanosoma cruziinfection causes an imbalance in the hypothalamic-pituitary-adrenal (HPA) axis that is accompanied by a progressive decrease in growth hormone (GH) and prolactin (PRL) production. In humans, inactivating mutations in the GH receptor gene cause Laron Syndrome (LS), an autosomal recessive disorder. Affected subjects are short, have increased adiposity, decreased insulin-like growth factor-I (IGFI), increased serum GH levels, are highly resistant to diabetes and cancer, and display slow cognitive decline. In addition, CD incidence in these individuals is diminished despite living in highly endemic areas. Consequently, we decided to investigate the in vitro effect of GH/IGF-I on T. cruzi infection. DESIGN: We first treated the parasite and/or host cells with different peptide hormones including GH, IGFI, and PRL. Then, we treated cells using different combinations of GH/IGF-I attempting to mimic the GH/IGF-I serum levels observed in LS subjects. RESULTS: We found that exogenous GH confers protection against T. cruzi infection. Moreover, this effect is mediated by GH and not IGFI. The combination of relatively high GH (50 ng/ml) and low IGF-I (20 ng/ml), mimicking the hormonal pattern seen in LS individuals, consistently decreased T. cruzi infection in vitro. CONCLUSIONS: The combination of relatively high GH and low IGF-I serum levels in LS individuals may be an underlying condition providing partial protection against T. cruzi infection.


Assuntos
Doença de Chagas , Hormônio do Crescimento Humano , Síndrome de Laron , Doença de Chagas/tratamento farmacológico , Hormônio do Crescimento/genética , Humanos , Fator de Crescimento Insulin-Like I , Prolactina
7.
Pituitary ; 25(1): 1-51, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797529

RESUMO

Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.


Assuntos
Hormônio do Crescimento , Receptores da Somatotropina , Animais , Composição Corporal , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo
8.
Aging Cell ; 20(12): e13506, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811874

RESUMO

Studies in multiple species indicate that reducing growth hormone (GH) action enhances healthy lifespan. In fact, GH receptor knockout (GHRKO) mice hold the Methuselah prize for the world's longest-lived laboratory mouse. We previously demonstrated that GHR ablation starting at puberty (1.5 months), improved insulin sensitivity and female lifespan but results in markedly reduced body size. In this study, we investigated the effects of GHR disruption in mature-adult mice at 6 months old (6mGHRKO). These mice exhibited GH resistance (reduced IGF-1 and elevated GH serum levels), increased body adiposity, reduced lean mass, and minimal effects on body length. Importantly, 6mGHRKO males have enhanced insulin sensitivity and reduced neoplasms while females exhibited increased median and maximal lifespan. Furthermore, fasting glucose and oxidative damage was reduced in females compared to males irrespective of Ghr deletion. Overall, disrupted GH action in adult mice resulted in sexual dimorphic effects suggesting that GH reduction at older ages may have gerotherapeutic effects.


Assuntos
Insulina/metabolismo , Receptores da Somatotropina/genética , Envelhecimento , Animais , Feminino , Masculino , Camundongos , Transdução de Sinais
9.
J Biol Chem ; 296: 100588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33774052

RESUMO

Excess circulating human growth hormone (hGH) in vivo is linked to metabolic and growth disorders such as cancer, diabetes, and acromegaly. Consequently, there is considerable interest in developing antagonists of hGH action. Here, we present the design, synthesis, and characterization of a 16-residue peptide (site 1-binding helix [S1H]) that inhibits hGH-mediated STAT5 phosphorylation in cultured cells. S1H was designed as a direct sequence mimetic of the site 1 mini-helix (residues 36-51) of wild-type hGH and acts by inhibiting the interaction of hGH with the human growth hormone receptor (hGHR). In vitro studies indicated that S1H is stable in human serum and can adopt an α-helix in solution. Our results also show that S1H mitigates phosphorylation of STAT5 in cells co-treated with hGH, reducing intracellular STAT5 phosphorylation levels to those observed in untreated controls. Furthermore, S1H was found to attenuate the activity of the hGHR and the human prolactin receptor, suggesting that this peptide acts as an antagonist of both lactogenic and somatotrophic hGH actions. Finally, we used alanine scanning to determine how discrete amino acids within the S1H sequence contribute to its structural organization and biological activity. We observed a strong correlation between helical propensity and inhibitory effect, indicating that S1H-mediated antagonism of the hGHR is largely dependent on the ability for S1H to adopt an α-helix. Taken together, these results show that S1H not only acts as a novel peptide-based antagonist of the hGHR but can also be applied as a chemical tool to study the molecular nature of hGH-hGHR interactions.


Assuntos
Peptídeos/farmacologia , Receptores da Somatotropina/antagonistas & inibidores , Linhagem Celular , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Modelos Moleculares , Peptídeos/química , Fosforilação/efeitos dos fármacos , Conformação Proteica , Receptores da Somatotropina/química , Receptores da Somatotropina/metabolismo , Fator de Transcrição STAT5/metabolismo
10.
Rev Endocr Metab Disord ; 22(1): 3-16, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33033978

RESUMO

Nearly one century of research using growth hormone deficient (GHD) mouse lines has contributed greatly toward our knowledge of growth hormone (GH), a pituitary-derived hormone that binds and signals through the GH receptor and affects many metabolic processes throughout life. Although delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, small body size, and glucose intolerance appear to be among the negative characteristics of these GHD mouse lines, these mice still consistently outlive their normal sized littermates. Furthermore, the absence of GH action in these mouse lines leads to enhanced insulin sensitivity (likely due to the lack of GH's diabetogenic actions), delayed onset for a number of age-associated physiological declines (including cognition, cancer, and neuromusculoskeletal frailty), reduced cellular senescence, and ultimately, extended lifespan. In this review, we provide details about history, availability, growth, physiology, and aging of five commonly used GHD mouse lines.


Assuntos
Modelos Animais de Doenças , Hormônio do Crescimento/deficiência , Envelhecimento , Animais , Humanos , Resistência à Insulina , Camundongos , Obesidade
11.
Cancers (Basel) ; 12(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291663

RESUMO

Growth hormone (GH) and the GH receptor (GHR) are expressed in a wide range of malignant tumors including melanoma. However, the effect of GH/insulin-like growth factor (IGF) on melanoma in vivo has not yet been elucidated. Here we assessed the physical and molecular effects of GH on mouse melanoma B16-F10 and human melanoma SK-MEL-30 cells in vitro. We then corroborated these observations with syngeneic B16-F10 tumors in two mouse lines with different levels of GH/IGF: bovine GH transgenic mice (bGH; high GH, high IGF-1) and GHR gene-disrupted or knockout mice (GHRKO; high GH, low IGF-1). In vitro, GH treatment enhanced mouse and human melanoma cell growth, drug retention and cell invasion. While the in vivo tumor size was unaffected in both bGH and GHRKO mouse lines, multiple drug-efflux pumps were up regulated. This intrinsic capacity of therapy resistance appears to be GH dependent. Additionally, epithelial-to-mesenchymal transition (EMT) gene transcription markers were significantly upregulated in vivo supporting our current and recent in vitro observations. These syngeneic mouse melanoma models of differential GH/IGF action can be valuable tools in screening for therapeutic options where lowering GH/IGF-1 action is important.

12.
Endocrinology ; 161(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556100

RESUMO

A rare 20K isoform of GH-V (here abbreviated as GHv) was discovered in 1998. To date, only 1 research article has characterized this isoform in vivo, observing that GHv treatment in male high-fat fed rats had several GH-like activities, but unlike GH lacked diabetogenic and lactogenic activities and failed to increase IGF-1 or body length. Therefore, the current study was conducted to further characterize the in vivo activities of GHv in a separate species and in a GH-deficient model (GH-/- mice) and with both sexes represented. GHv-treated GH-/- mice had significant increases to serum IGF-1, femur length, body length, body weight, and lean body mass and reduced body fat mass similar to mice receiving GH treatment. GH treatment increased circulating insulin levels and impaired insulin sensitivity; in contrast, both measures were unchanged in GHv-treated mice. Since GHv lacks prolactin receptor (PRLR) binding activity, we tested the ability of GH and GHv to stimulate the proliferation of human cancer cell lines and found that GHv has a decreased proliferative response in cancers with high PRLR. Our findings demonstrate that GHv can stimulate insulin-like growth factor-1 and subsequent longitudinal body growth in GH-deficient mice similar to GH, but unlike GH, GHv promoted growth without inhibiting insulin action and without promoting the growth of PRLR-positive cancers in vitro. Thus, GHv may represent improvements to current GH therapies especially for individuals at risk for metabolic syndrome or PRLR-positive cancers.


Assuntos
Hormônio do Crescimento/genética , Hormônio do Crescimento Humano/farmacologia , Hormônios Placentários/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Feminino , Hormônio do Crescimento/deficiência , Terapia de Reposição Hormonal , Hormônio do Crescimento Humano/isolamento & purificação , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/química , Placenta/metabolismo , Hormônios Placentários/uso terapêutico , Gravidez , Isoformas de Proteínas
13.
Cancers (Basel) ; 11(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547367

RESUMO

Growth hormone (GH) facilitates therapy resistance in the cancers of breast, colon, endometrium, and melanoma. The GH-stimulated pathways responsible for this resistance were identified as suppression of apoptosis, induction of epithelial-to-mesenchymal transition (EMT), and upregulated drug efflux by increased expression of ATP-binding cassette containing multidrug efflux pumps (ABC-transporters). In extremely drug-resistant melanoma, ABC-transporters have also been reported to mediate drug sequestration in intracellular melanosomes, thereby reducing drug efficacy. Melanocyte-inducing transcription factor (MITF) is the master regulator of melanocyte and melanoma cell fate as well as the melanosomal machinery. MITF targets such as the oncogene MET, as well as MITF-mediated processes such as resistance to radiation therapy, are both known to be upregulated by GH. Therefore, we chose to query the direct effects of GH on MITF expression and activity towards conferring chemoresistance in melanoma. Here, we demonstrate that GH significantly upregulates MITF as well as the MITF target genes following treatment with multiple anticancer drug treatments such as chemotherapy, BRAF-inhibitors, as well as tyrosine-kinase inhibitors. GH action also upregulated MITF-regulated processes such as melanogenesis and tyrosinase activity. Significant elevation in MITF and MITF target gene expression was also observed in mouse B16F10 melanoma cells and xenografts in bovine GH transgenic (bGH) mice compared to wild-type littermates. Through pathway inhibitor analysis we identified that both the JAK2-STAT5 and SRC activities were critical for the observed effects. Additionally, a retrospective analysis of gene expression data from GTEx, NCI60, CCLE, and TCGA databases corroborated our observed correlation of MITF function and GH action. Therefore, we present in vitro, in vivo, and in silico evidence which strongly implicates the GH-GHR axis in inducing chemoresistance in human melanoma by driving MITF-regulated and ABC-transporter-mediated drug clearance pathways.

14.
Cancer Drug Resist ; 2: 827-846, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32382711

RESUMO

Pituitary derived and peripherally produced growth hormone (GH) is a crucial mediator of longitudinal growth, organ development, metabolic regulation with tissue specific, sex specific, and age-dependent effects. GH and its cognate receptor (GHR) are expressed in several forms of cancer and have been validated as an anti-cancer target through a large body of in vitro, in vivo and epidemiological analyses. However, the underlying molecular mechanisms of GH action in cancer prognosis and therapeutic response had been sparse until recently. This review assimilates the critical details of GH-GHR mediated therapy resistance across different cancer types, distilling the therapeutic implications based on our current understanding of these effects.

15.
Eur J Endocrinol ; 178(5): R155-R181, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29459441

RESUMO

Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.


Assuntos
Doenças do Sistema Endócrino/genética , Doenças do Sistema Endócrino/fisiopatologia , Hormônio do Crescimento/fisiologia , Hormônio do Crescimento Humano/fisiologia , Camundongos Knockout/genética , Receptores da Somatotropina/genética , Animais , Doenças do Sistema Endócrino/psicologia , Humanos , Síndrome de Laron/genética , Síndrome de Laron/fisiopatologia , Longevidade , Camundongos
16.
J Clin Endocrinol Metab ; 102(10): 3662-3673, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938477

RESUMO

Context: Previous studies have implicated growth hormone (GH) in the progression of several cancers, including breast, colorectal, and pancreatic. A mechanism by which GH may play this role in cancer is through the induction of the epithelial-to-mesenchymal transition (EMT). During the EMT process, epithelial cells lose their defining phenotypes, causing loss of cellular adhesion and increased cell migration. This review aims to carefully summarize the previous two decades of research that points to GH as an initiator of EMT, in both cancerous and noncancerous tissues. Evidence Acquisition: Sources were collected using PubMed and Google Scholar search engines by using specific GH- and/or EMT-related terms. Identified manuscripts were selected for further analysis based on presentation of GH-induced molecular markers of the EMT process in vivo or in vitro. Evidence Synthesis: Cellular mechanisms involved in GH-induced EMT are the focus of this review, both in cancerous and noncancerous epithelial cells. Conclusions: Our findings suggest that a myriad of molecular mechanisms are induced by GH that cause EMT and may point to potential therapeutic use of GH antagonists or any downregulator of GH action in EMT-related disease.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Hormônio do Crescimento/fisiologia , Animais , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Hormônio do Crescimento/farmacologia , Humanos , Neoplasias/patologia
17.
Horm Cancer ; 8(3): 143-156, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28293855

RESUMO

Melanoma remains one of the most therapy-resistant forms of human cancer despite recent introductions of highly efficacious targeted therapies. The intrinsic therapy resistance of human melanoma is largely due to abundant expression of a repertoire of xenobiotic efflux pumps of the ATP-binding cassette (ABC) transporter family. Here, we report that GH action is a key mediator of chemotherapeutic resistance in human melanoma cells. We investigated multiple ABC efflux pumps (ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2) reportedly associated with melanoma drug resistance in different human melanoma cells and tested the efficacy of five different anti-cancer compounds (cisplatin, doxorubicin, oridonin, paclitaxel, vemurafenib) with decreased GH action. We found that GH treatment of human melanoma cells upregulates expression of multiple ABC transporters and increases the EC50 of melanoma drug vemurafenib. Also, vemurafenib-resistant melanoma cells had upregulated levels of GH receptor (GHR) expression as well as ABC efflux pumps. GHR knockdown (KD) using siRNA in human melanoma cells treated with sub-EC50 doses of anti-tumor compounds resulted in significantly increased drug retention, decreased cell proliferation and increased drug efficacy, compared to mock-transfected controls. Our set of findings identify an unknown mechanism of GH regulation in mediating melanoma drug resistance and validates GHR as a unique therapeutic target for sensitizing highly therapy-resistant human melanoma cells to lower doses of anti-cancer drugs.


Assuntos
Antineoplásicos/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Melanoma/tratamento farmacológico , Receptores da Somatotropina/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Indóis/administração & dosagem , Melanoma/genética , Melanoma/patologia , Proteína 2 Associada à Farmacorresistência Múltipla , Paclitaxel/administração & dosagem , Receptores da Somatotropina/antagonistas & inibidores , Sulfonamidas/administração & dosagem , Vemurafenib
18.
Oncotarget ; 8(13): 21579-21598, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28223541

RESUMO

Recent reports have confirmed highest levels of growth hormone (GH) receptor (GHR) transcripts in melanoma, one of the most aggressive forms of human cancer. Yet the mechanism of GH action in melanoma remains mostly unknown. Here, using human malignant melanoma cells, we examined the effects of GH excess or siRNA mediated GHR knock-down (GHRKD) on tumor proliferation, migration and invasion. GH promoted melanoma progression while GHRKD attenuated the same. Western blot analysis revealed drastic modulation of multiple oncogenic signaling pathways (JAK2, STAT1, STAT3, STAT5, AKT, mTOR, SRC and ERK1/2) following addition of GH or GHRKD. Further, we show that GH excess upregulates expression of markers of epithelial mesenchymal transition in human melanoma, while the effects were reversed by GHRKD. Interestingly, we observed consistent expression of GH transcript in the melanoma cells as well as marked modulation of the IGF receptors and binding proteins (IGF1R, IGF2R, IR, IGFBP2, IGFBP3) and the oncogenic HGF-MET mRNA, in response to excess GH or GHRKD. Our study thus identifies the mechanistic model of GH-GHR action in human melanoma and validates it as an important pharmacological target of intervention.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Melanoma/patologia , Receptores da Somatotropina/metabolismo , Transdução de Sinais/fisiologia , Western Blotting , Linhagem Celular Tumoral , Progressão da Doença , Imunofluorescência , Técnicas de Silenciamento de Genes , Hormônio do Crescimento Humano/metabolismo , Humanos , Melanoma/metabolismo , Reação em Cadeia da Polimerase
19.
J Biomol Screen ; 20(2): 265-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25300873

RESUMO

Mycobacterium tuberculosis (Mtb) DNA gyrase ATPase was the target of a tuberculosis drug discovery program. The low specific activity of the Mtb ATPase prompted the use of Mycobacterium smegmatis (Msm) enzyme as a surrogate for lead generation, since it had 20-fold higher activity. Addition of GyrA or DNA did not significantly increase the activity of the Msm GyrB ATPase, and an assay was developed using GyrB alone. Inhibition of the Msm ATPase correlated well with inhibition of Mtb DNA gyrase supercoiling across three chemical scaffolds, justifying its use. As the IC50 of compounds approached the enzyme concentration, surrogate assays were used to estimate potencies (e.g., the shift in thermal melt of Mtb GyrB, which correlated well with IC(50)s >10 nM). Analysis using the Morrison equation enabled determination of K(i)(app)s in the sub-nanomolar range. Surface plasmon resonance was used to confirm these IC(50)s and measure the K ds of binding, but a fragment of Mtb GyrB had to be used. Across three scaffolds, the dissociation half life, t1/2, of the inhibitor-target complex was ≤ 8 min. This toolkit of assays was developed to track the potency of enzyme inhibition and guide the chemistry for progression of compounds in a lead identification program.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antituberculosos/farmacologia , DNA Girase/metabolismo , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Adenosina Trifosfatases/genética , DNA Girase/genética , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Concentração Inibidora 50 , Cinética , Testes de Sensibilidade Microbiana/métodos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA