RESUMO
Chimeric antigen receptor (CAR) T cells targeting CD19+ B cells have demonstrated efficacy in refractory systemic lupus erythematosus (SLE). Although initial clinical data suggest that anti-CD19 CAR T cell therapy is well tolerated and highly effective, the immunologic consequences of CAR T cell therapy in SLE patients remain unclear. We profiled serum in six refractory SLE patients prior to and 3 months following CAR T cell infusion. Three months post T cell infusion, the inflammatory cytokines IL-6 and TNFα decreased in patient sera. This was accompanied by elevations in serum IL-7 and BAFF. Furthermore, SLE-associated antibodies dropped profoundly in five of six patients. Last, consistent with other reports of CD19 CAR T therapy in B cell malignancies, we were able to show marginal impact of anti-CD19 CART therapy on pre-existing humoral immune responses in SLE patients. Together, these results provide insights into the mechanisms of efficacy of anti-CD19 CAR T cell therapy in SLE.
RESUMO
BACKGROUND: Gene-modified autologous T cells expressing NY-ESO-1c259, an affinity-enhanced T-cell receptor (TCR) reactive against the NY-ESO-1-specific HLA-A*02-restricted peptide SLLMWITQC (NY-ESO-1 SPEAR T-cells; GSK 794), have demonstrated clinical activity in patients with advanced synovial sarcoma (SS). The factors contributing to gene-modified T-cell expansion and the changes within the tumor microenvironment (TME) following T-cell infusion remain unclear. These studies address the immunological mechanisms of response and resistance in patients with SS treated with NY-ESO-1 SPEAR T-cells. METHODS: Four cohorts were included to evaluate antigen expression and preconditioning on efficacy. Clinical responses were assessed by RECIST v1.1. Engineered T-cell persistence was determined by qPCR. Serum cytokines were evaluated by immunoassay. Transcriptomic analyses and immunohistochemistry were performed on tumor biopsies from patients before and after T-cell infusion. Gene-modified T-cells were detected within the TME via an RNAish assay. RESULTS: Responses across cohorts were affected by preconditioning and intra-tumoral NY-ESO-1 expression. Of the 42 patients reported (data cut-off 4June2018), 1 patient had a complete response, 14 patients had partial responses, 24 patients had stable disease, and 3 patients had progressive disease. The magnitude of gene-modified T-cell expansion shortly after infusion was associated with response in patients with high intra-tumoral NY-ESO-1 expression. Patients receiving a fludarabine-containing conditioning regimen experienced increases in serum IL-7 and IL-15. Prior to infusion, the TME exhibited minimal leukocyte infiltration; CD163+ tumor-associated macrophages (TAMs) were the dominant population. Modest increases in intra-tumoral leukocytes (≤5%) were observed in a subset of subjects at approximately 8 weeks. Beyond 8 weeks post infusion, the TME was minimally infiltrated with a TAM-dominant leukocyte infiltrate. Tumor-associated antigens and antigen presentation did not significantly change within the tumor post-T-cell infusion. Finally, NY-ESO-1 SPEAR T cells trafficked to the TME and maintained cytotoxicity in a subset of patients. CONCLUSIONS: Our studies elucidate some factors that underpin response and resistance to NY-ESO-1 SPEAR T-cell therapy. From these data, we conclude that a lymphodepletion regimen containing high doses of fludarabine and cyclophosphamide is necessary for SPEAR T-cell persistence and efficacy. Furthermore, these data demonstrate that non-T-cell inflamed tumors, which are resistant to PD-1/PD-L1 inhibitors, can be treated with adoptive T-cell based immunotherapy. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01343043 , Registered 27 April 2011.
Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva , Proteínas de Membrana/imunologia , Sarcoma Sinovial/imunologia , Sarcoma Sinovial/terapia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Biomarcadores , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Citocinas/metabolismo , Citotoxicidade Imunológica , Antígenos HLA-A/imunologia , Humanos , Imuno-Histoquímica , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Sarcoma Sinovial/patologia , Especificidade do Receptor de Antígeno de Linfócitos T , Resultado do Tratamento , Microambiente Tumoral/imunologiaRESUMO
We evaluated the safety and activity of autologous T cells expressing NY-ESO-1c259, an affinity-enhanced T-cell receptor (TCR) recognizing an HLA-A2-restricted NY-ESO-1/LAGE1a-derived peptide, in patients with metastatic synovial sarcoma (NY-ESO-1c259T cells). Confirmed antitumor responses occurred in 50% of patients (6/12) and were characterized by tumor shrinkage over several months. Circulating NY-ESO-1c259T cells were present postinfusion in all patients and persisted for at least 6 months in all responders. Most of the infused NY-ESO-1c259T cells exhibited an effector memory phenotype following ex vivo expansion, but the persisting pools comprised largely central memory and stem-cell memory subsets, which remained polyfunctional and showed no evidence of T-cell exhaustion despite persistent tumor burdens. Next-generation sequencing of endogenous TCRs in CD8+ NY-ESO-1c259T cells revealed clonal diversity without contraction over time. These data suggest that regenerative pools of NY-ESO-1c259T cells produced a continuing supply of effector cells to mediate sustained, clinically meaningful antitumor effects.Significance: Metastatic synovial sarcoma is incurable with standard therapy. We employed engineered T cells targeting NY-ESO-1, and the data suggest that robust, self-regenerating pools of CD8+ NY-ESO-1c259T cells produce a continuing supply of effector cells over several months that mediate clinically meaningful antitumor effects despite prolonged exposure to antigen. Cancer Discov; 8(8); 944-57. ©2018 AACR.See related commentary by Keung and Tawbi, p. 914This article is highlighted in the In This Issue feature, p. 899.
Assuntos
Antígenos de Neoplasias/imunologia , Proteínas de Membrana/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Sarcoma Sinovial/terapia , Linfócitos T/transplante , Transferência Adotiva , Adulto , Linfócitos T CD8-Positivos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Projetos Piloto , Sarcoma Sinovial/imunologia , Linfócitos T/imunologia , Resultado do Tratamento , Adulto JovemRESUMO
CD4(+)CD25(+)Foxp3(+) Tregs have a diminished capacity to activate the PI3K/Akt pathway. Although blunted Akt activity is necessary to maintain Treg function, the consequences of this altered signaling are unclear. Glut1 is a cell-surface receptor responsible for facilitating glucose transport across plasma membranes, whose expression is tightly coupled to costimulatory signals and Akt phosphorylation. Freshly isolated human Tregs were unable to up-regulate Glut1 in response to TCR and costimulatory signals compared with Tconv. Consequently, the ability of Tregs to use glucose was also reduced. Introduction of Foxp3 into Tconv inhibited Akt activation and Glut1 expression, indicating that Foxp3 can regulate Glut1. Finally, pharmacologic activation of Akt in Tregs can induce Glut1, overcoming the effects of Foxp3. Together, these results illustrate the molecular basis behind differential glucose metabolism in Tregs.
Assuntos
Fatores de Transcrição Forkhead/imunologia , Transportador de Glucose Tipo 1/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Linfócitos T Reguladores/imunologia , Regulação para Cima/imunologia , Membrana Celular/imunologia , Ativação Enzimática/imunologia , Feminino , Humanos , Masculino , Receptores de Antígenos de Linfócitos T/imunologiaRESUMO
Many recent advances in basic cell biology and immunology are a harbinger of progress in adoptive cell therapy (ACT) including (1) the finding that host lymphodepletion enhances engraftment and efficacy, (2) the recognition that in vitro T cell functions may not correlate with in vivo efficacy, and (3) the development of advanced ex vivo culture methods to expand lymphocytes to therapeutically effective numbers. In this article, we focus on the development of artificial antigen presenting cells (aAPCs) in our laboratory and their applicability to augment ACT protocols. We also describe how aAPCs can be used to broaden ACT to treat patients with a wide variety of cancers, chronic infectious diseases, and autoimmune manifestations.
Assuntos
Células Apresentadoras de Antígenos/imunologia , Imunoterapia Adotiva/métodos , Linfócitos T/transplante , Animais , Humanos , Células K562 , Ativação Linfocitária/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/transplante , Linfócitos T/citologia , Linfócitos T/imunologiaRESUMO
In this study, we demonstrate that malignant mature CD4(+) T lymphocytes derived from cutaneous T cell lymphomas (CTCL) variably display some aspects of the T regulatory phenotype. Whereas seven cell lines representing a spectrum of primary cutaneous T cell lymphoproliferative disorders expressed CD25 and TGF-beta, the expression of FOXP3 and, to a lesser degree, IL-10 was restricted to two CTCL cell lines that are dependent on exogenous IL-2. IL-2, IL-15, and IL-21, all of which signals through receptors containing the common gamma chain, induced expression of IL-10 in the IL-2-dependent cell lines as well as primary leukemic CTCL cells. However, only IL-2 and IL-15, but not IL-21, induced expression of FOXP3. The IL-2-triggered induction of IL-10 and FOXP3 expression occurred by signaling through STAT3 and STAT5, respectively. Immunohistochemical analysis of the CTCL tissues revealed that FOXP3-expressing cells were common among the CD7-negative enlarged atypical and small lymphocytes at the early skin patch and plaque stages. Their frequency was profoundly diminished at the tumor stage and in the CTCL lymph node lesions with or without large cell transformation. These results indicate that the T regulatory cell features are induced in CTCL T cells by common gamma chain signaling cytokines such as IL-2 and do not represent a fully predetermined, constitutive phenotype independent of the local environmental stimuli to which these malignant mature CD4(+) T cells become exposed.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Citocinas/fisiologia , Imunofenotipagem , Subunidade gama Comum de Receptores de Interleucina/fisiologia , Linfoma Cutâneo de Células T/imunologia , Transdução de Sinais/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linhagem Celular Tumoral , Progressão da Doença , Fatores de Transcrição Forkhead/biossíntese , Humanos , Interleucina-10/metabolismo , Interleucina-15/fisiologia , Interleucina-2/fisiologia , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Leucemia de Células T/imunologia , Leucemia de Células T/metabolismo , Leucemia de Células T/patologia , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologiaRESUMO
Addition of rapamycin to cultures of expanding natural CD4+CD25+Foxp3+ T regulatory cells (Tregs) helps maintain their suppressive activity, but the underlying mechanism is unclear. Pim 2 is a serine/threonine kinase that can confer rapamycin resistance. Unexpectedly, pim 2 was found to be constitutively expressed in freshly isolated, resting Tregs, but not in CD4+CD25- T effector cells. Introduction of Foxp3, but not Foxp3Delta2, into effector T cells induced pim 2 expression and conferred preferential expansion in the presence of rapamycin, indicating that Foxp3 can regulate pim 2 expression. Finally, we determined there is a positive correlation between Treg expansion and Foxp3 expression in the presence of rapamycin. Together, these results indicate that Tregs are programmed to be resistant to rapamycin, providing further rationale for why this immunosuppressive drug should be used in conjunction with expanded Tregs.
Assuntos
Fatores de Transcrição Forkhead/imunologia , Imunossupressores/farmacologia , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Proto-Oncogênicas/imunologia , Sirolimo/farmacologia , Linfócitos T Reguladores/imunologia , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/imunologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Linfócitos T Reguladores/citologiaRESUMO
AIMS: The involvement of various growth factors, growth factor receptors and proliferative markers in the molecular pathogenesis of astrocytic neoplasms are being studied extensively. Epidermal Growth Factor Receptor (EGFR) gene overexpression occurs in nearly 50% of cases of glioblastoma. Since EGFR and proliferating cell nuclear antigen (PCNA) are involved in mitogenic signal transduction and cellular proliferation pathway, we have studied the correlation between the expression of EGFR and PCNA labeling index in astrocytic tumors. MATERIALS AND METHODS: We investigated the immunohistochemical expression of EGFR and PCNA using the appropriate monoclonal antibodies in 40 cases of astrocytic tumors of which 21 cases were glioblastoma, eight cases were Grade III or anaplastic astrocytomas and six cases were Grade II or diffuse astrocytomas and five cases were Grade I or pilocytic astrocytomas. RESULTS: Both the EGFR expression and PCNA labeling index increase with increasing grades of astrocytomas with a significantly high percentage of cells showing positive staining for both EGFR and PCNA in GBM and Grade III astrocytomas compared to Grade II astrocytomas. The expression levels of both EGFR and PCNA were low in Grade I or pilocytic astrocytomas. CONCLUSIONS: A significant correlation was found between EGFR overexpression and PCNA labeling index in Grade III and Grade II astrocytomas and glioblastoma. These suggest that the tumor proliferation, at least in higher grades of astrocytomas is dependent in some measure on EGF and EGFR-related signaling pathways.