Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 18(1): 123-135, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628891

RESUMO

BACKGROUND: Activation of protease-activated receptor 1 (PAR1) by either thrombin or activated protein C (aPC) differentially regulate the quiescence and bone marrow (BM) retention of hematopoietic stem cells (HSC). Murine HSC co-express THBD, PAR1, and endothelial protein C receptor (EPCR), suggesting that HSC sustain quiescence in a quasi-cell autonomous manner due to the binding of thrombin present in the microenvironment to THBD, activation of EPCR-bound protein C by the thrombin-THBD-complex, and subsequent activation of PAR1 by the aPC-EPCR complex. OBJECTIVE: To determine the role of THBD expression on HSC for sustaining stem cell quiescence and BM retention under homeostatic conditions. METHODS: Hematopoietic stem cell function was analyzed in mice with constitutive or temporally controlled complete THBD-deficiency by flow cytometry, functional assays, and single cell RNA profiling. RESULTS: THBD was expressed in mouse, but not human, HSC, progenitors, and immature B cells. Expression in vascular endothelium was conserved in humans' BM. Mice with constitutive THBD deficiency had a normal peripheral blood profile, altered BM morphology, reduced numbers of progenitors and immature B cells, pronounced extramedullary hematopoiesis, increased HSC frequency, and marginally altered transcriptionally defined HSC stemness. Transplantation experiments indicated near normal engraftment and repopulating ability of THBD-deficient HSC. Transgenic aPC supplementation normalized BM histopathology and HSC abundance, and partially restored transcriptional stemness, but had no effect on B cell progenitors and extramedullary hematopoiesis. Temporally controlled THBD gene ablation in adult mice did not cause the above abnormalities. CONCLUSION: THBD expression on HSPC has minor effects on homeostatic hematopoiesis in mice, and is not conserved in humans.


Assuntos
Transdução de Sinais , Trombomodulina , Animais , Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-1/genética , Trombomodulina/genética
2.
Nat Commun ; 10(1): 190, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643147

RESUMO

A number of different B cell subsets have been shown to exhibit regulatory activity using a variety of mechanisms to attenuate inflammatory diseases. Here we show, using anti-CD20-mediated partial B cell depletion in mice, that a population of mature B cells distinguishable by IgDlow/- expression maintains tolerance by, at least in part, promoting CD4+Foxp3+ regulatory T cell homeostatic expansion via glucocorticoid-induced tumor necrosis factor receptor ligand, or GITRL. Cell surface phenotyping, transcriptome analysis and developmental study data show that B cells expressing IgD at a low level (BDL) are a novel population of mature B cells that emerge in the spleen from the transitional-2 stage paralleling the differentiation of follicular B cells. The cell surface phenotype and regulatory function of BDL are highly suggestive that they are a new B cell subset. Human splenic and peripheral blood IgDlow/- B cells also exhibit BDL regulatory activity, rendering them of therapeutic interest.


Assuntos
Subpopulações de Linfócitos B/imunologia , Dermatite de Contato/imunologia , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Tolerância Imunológica , Linfócitos T Reguladores/imunologia , Animais , Subpopulações de Linfócitos B/metabolismo , Separação Celular/métodos , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Imunoglobulina D/metabolismo , Leucócitos Mononucleares , Camundongos , Camundongos Endogâmicos C57BL , Oxazolona/imunologia , Baço/citologia , Baço/crescimento & desenvolvimento , Baço/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Necrose Tumoral/imunologia , Fatores de Necrose Tumoral/metabolismo
3.
J Immunol ; 195(7): 3071-85, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324769

RESUMO

It is clear that IL-10 plays an essential role in maintaining homeostasis in the gut in response to the microbiome. However, it is unknown whether IL-10 also facilitates immune homeostasis at distal sites. To address this question, we asked whether splenic immune populations were altered in IL-10-deficient (Il10(-/-)) mice in which differences in animal husbandry history were associated with susceptibility to spontaneous enterocolitis that is microbiome dependent. The susceptible mice exhibited a significant increase in splenic macrophages, neutrophils, and marginal zone (MZ) B cells that was inhibited by IL-10 signaling in myeloid, but not B cells. The increase in macrophages was due to increased proliferation that correlated with a subsequent enhancement in MZ B cell differentiation. Cohousing and antibiotic treatment studies suggested that the alteration in immune homeostasis in the spleen was microbiome dependent. The 16S rRNA sequencing revealed that susceptible mice harbored a different microbiome with a significant increase in the abundance of the bacterial genus Helicobacter. The introduction of Helicobacter hepaticus to the gut of nonsusceptible mice was sufficient to drive macrophage expansion and MZ B cell development. Given that myeloid cells and MZ B cells are part of the first line of defense against blood-borne pathogens, their increase following a breach in the gut epithelial barrier would be protective. Thus, IL-10 is an essential gatekeeper that maintains immune homeostasis at distal sites that can become functionally imbalanced upon the introduction of specific pathogenic bacteria to the intestinal track.


Assuntos
Linfócitos B/imunologia , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/imunologia , Interleucina-10/genética , Animais , Linfócitos B/citologia , Sequência de Bases , Contagem de Células , Diferenciação Celular/imunologia , Proliferação de Células , DNA Bacteriano/genética , Enterocolite/imunologia , Enterocolite/microbiologia , Infecções por Helicobacter/microbiologia , Interleucina-10/imunologia , Ativação Linfocitária/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Transdução de Sinais/imunologia
4.
Methods Mol Biol ; 1190: 243-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25015285

RESUMO

B cells are thought to play a pathogenic role in multiple sclerosis (MS), an autoimmune disease affecting the central nervous system (CNS). This idea is supported by the reduction of disease in MS patients undergoing antibody-mediated B cell depletion therapy. In contrast, in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, B cells have been shown to play a regulatory role. This is suggestive of a dual role for B cells in CNS autoimmunity. It is possible that a critical balance between the pathogenic and regulatory populations of B cells might be involved in the manifestation of the disease. Although in mice, different B cell subsets have been shown to exert immunoregulation through varied mechanisms, the phenotype of regulatory B cells in humans and factors affecting their function are not well known. Also, the origin and development of regulatory B cells is not known. It is important to thoroughly identify the different populations of B cells that might be involved in suppressing CNS autoimmunity, their mode of function and factors that regulate their immunosuppressive properties for using regulatory B cells as a therapy for MS. Here we present methods to study the phenotype and mechanisms of immune suppression by B cells in different mouse models of EAE.


Assuntos
Linfócitos B Reguladores/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Transferência Adotiva , Sequência de Aminoácidos , Animais , Linfócitos B Reguladores/citologia , Linfócitos B Reguladores/patologia , Separação Celular/métodos , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Técnicas de Cocultura/métodos , Citocinas/análise , Citocinas/imunologia , Encefalomielite Autoimune Experimental/patologia , Sistema Imunitário/citologia , Imunização , Imunofenotipagem/métodos , Camundongos , Dados de Sequência Molecular , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia
5.
Semin Immunol ; 26(5): 369-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24877594

RESUMO

It has been well appreciated that the endocannabinoid system can regulate immune responses via the cannabinoid receptor 2 (CB2), which is primarily expressed by cells of the hematopoietic system. The endocannabinoid system is composed of receptors, ligands and enzymes controlling the synthesis and degradation of endocannabinoids. Along with endocannabinoids, both plant-derived and synthetic cannabinoids have been shown to bind to and signal through CB2 via G proteins leading to both inhibitory and stimulatory signals depending on the biological process. Because no cannabinoid ligand has been identified that only binds to CB2, the generation of mice deficient in CB2 has greatly expanded our knowledge of how CB2 contributes to immune cell development and function in health and disease. In regards to humans, genetic studies have associated CB2 with a variety of human diseases. Here, we review the endocannabinoid system with an emphasis on CB2 and its role in the immune system.


Assuntos
Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Endocanabinoides/metabolismo , Sistema Imunitário/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sistema Nervoso Central/imunologia , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Endocanabinoides/imunologia , Regulação da Expressão Gênica , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Osteoporose/genética , Osteoporose/imunologia , Osteoporose/metabolismo , Osteoporose/patologia , Plantas/genética , Plantas/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais
6.
J Immunol Methods ; 396(1-2): 163-7, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23928494

RESUMO

The CD45 congenic marker system is a highly utilized technique to track hematopoietic cells following bone marrow transplantation (BMT), with CD45.1 and CD45.2 being efficiently distinguished by flow cytometry. During the analysis of control mixed BM chimera mice in which lethally irradiated recipients were transplanted with an equal number of BM cells from WT CD45.1 and WT CD45.2 mice, we observed an unequal reconstitution of specific B cell subsets in the bone marrow (BM), lymph node (LN) and spleen. Specifically, in the BM and LN, there was an increase in the percentage of CD45.2 mature B cells. In the spleen, an increase in the percentage of CD45.2 transitional (T) 1 and T2 cells was observed. In contrast, the percentage of splenic CD45.1 marginal zone (MZ) B cells was significantly increased. When we compared the percentage of B cell subsets in unmanipulated WT CD45.1 and WT CD45.2 mice, we found that WT CD45.2 mice had significantly more LN B cells while WT CD45.1 mice exhibited an increase in MZ B cells. These data indicate that the alteration in the ratio of CD45.1 and CD45.2 B cell subsets in mixed chimera mice is a cell-intrinsic effect. Thus whenever the CD45 congenic system is used to track two genetically distinct populations of immune cells WT chimeras must be generated to allow normalization of the experimental data to avoid the reporting of unintentionally skewed data.


Assuntos
Subpopulações de Linfócitos B/citologia , Células da Medula Óssea/citologia , Antígenos Comuns de Leucócito/genética , Alelos , Animais , Medula Óssea , Transplante de Medula Óssea , Quimera , Antígenos Comuns de Leucócito/biossíntese , Camundongos
7.
Autoimmunity ; 45(5): 388-99, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22443691

RESUMO

A dual role of B cells in experimental autoimmune encephalomyelitis (EAE), the animal model of the human autoimmune disease multiple sclerosis (MS), has been established. In the first role, B cells contribute to the pathogenesis of EAE through the production of anti-myelin antibodies that contribute to demyelination. On the contrary, B cells have also been shown to have protective functions in that they play an essential role in the spontaneous recovery from EAE. In this review, we summarize studies conducted in a number of species demonstrating the conditions under which B cells are pathogenic in EAE. We also discuss the phenotype and anti-inflammatory mechanisms of regulatory B cells.


Assuntos
Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Animais , Anticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Encefalomielite Autoimune Experimental/etiologia , Humanos , Imunoglobulinas/imunologia
8.
J Immunol ; 188(7): 3188-98, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22368274

RESUMO

B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (µMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into µMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Linfócitos T Reguladores/imunologia , Fatores de Necrose Tumoral/fisiologia , Transferência Adotiva , Animais , Anticorpos Monoclonais Murinos/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/transplante , Antígenos B7/imunologia , Técnicas de Cocultura , Homeostase , Interleucina-10/fisiologia , Contagem de Linfócitos , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rituximab , Baço/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
9.
J Neuroimmunol ; 230(1-2): 1-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21145597

RESUMO

Multiple sclerosis (MS) is considered to be a T cell-mediated autoimmune disease that results in the presence of inflammatory lesions/plaques associated with mononuclear cell infiltrates, demyelination and axonal damage within the central nervous system (CNS). To date, FDA approved therapies in MS are thought to largely function by modulation of the immune response. Since autoimmune responses require many arms of the immune system, the direct cellular mechanisms of action of MS therapeutics are not definitively known. The mouse model of MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in deciphering the mechanism of action of MS drugs. In addition, EAE has been widely used to study the contribution of individual components of the immune system in CNS autoimmunity. In this regard, the role of B cells in EAE has been studied in mice deficient in B cells due to genetic ablation and following depletion with a B cell-targeted monoclonal antibody (mAb) (anti-CD20). Both strategies have indicated that B cells regulate the extent of EAE clinical disease and in their absence disease is exacerbated. Thus a new population of "regulatory B cells" has emerged. One reoccurring component of regulatory B cell function is the production of IL-10, a pleiotropic cytokine with potent anti-inflammatory properties. B cell depletion has also indicated that B cells, in particular antibody production, play a pathogenic role in EAE. B cell depletion in MS using a mAb to CD20 (rituximab) has shown promising results. In this review, we will discuss the current thinking on the role of B cells in MS drawing from knowledge gained in EAE studies and clinical trials using therapeutics that target B cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Animais , Autoimunidade/imunologia , Humanos , Camundongos
10.
Int J Cancer ; 118(10): 2470-8, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16353154

RESUMO

In West Bengal, India, more than 300,000 arsenic-exposed people are showing symptoms of arsenic toxicity, which include cancers of skin and different internal organs. Since only 15-20% of the exposed population manifest arsenic-induced skin lesions, it is thought that genetic variation might play an important role in arsenic toxicity and carcinogenicity. A total of 422 unrelated arsenic-exposed subjects (244 skin-symptomatic and 178 asymptomatic) were recruited for this study. Cytogenetic damage, as measured by chromosomal aberrations in lymphocytes and micronuclei formation in oral mucosa cells, urothelial cells and binucleated lymphocytes, was studied in unexposed, skin-symptomatic and asymptomatic individuals with similar socioeconomic status. Identification of null mutations in GSTT1 and GSTM1 genes were carried out by PCR amplification. GSTP1 SNPs, implicated in susceptibility to various cancers, were assessed by PCR-RFLP method. Symptomatic individuals had higher level of cytogenetic damage compared to asymptomatic individuals and asymptomatic individuals had significantly higher genotoxicity than unexposed individuals. No difference in allelic variants in GSTT1 and GSTP1 was observed between these 2 groups. Incidence of GSTM1 null gene frequencies was significantly higher in the asymptomatic group. Individuals with GSTM1-positive (at least one allele) had significantly higher risk of arsenic-induced skin lesions (odds ratio, 1.73; 95% confidence interval, 1.24-2.22). These results show a protective role of GSTM1 null in arsenic toxicity. This study also indicates that asymptomatic individuals are sub clinically affected and are also significantly susceptible to arsenic-induced genotoxicity.


Assuntos
Arsênio/toxicidade , Dano ao DNA , Exposição Ambiental , Glutationa S-Transferase pi/genética , Glutationa Transferase/genética , Abastecimento de Água , Adolescente , Adulto , Idoso , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Neoplasias/induzido quimicamente , Polimorfismo de Nucleotídeo Único , Dermatopatias/induzido quimicamente , Dermatopatias/genética , Classe Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA