Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
medRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38947090

RESUMO

Alzheimer's Disease (AD) biomarker measurement is key to aid in the diagnosis and prognosis of the disease. In the research setting, participant recruitment and retention and optimization of sample use, is one of the main challenges that observational studies face. Thus, obtaining accurate established biomarker measurements for stratification and maximizing use of the precious samples is key. Accurate technologies are currently available for established biomarkers, mainly immunoassays and immunoprecipitation liquid chromatography-mass spectrometry (IP-MS), and some of them are already being used in clinical settings. Although some immunoassays- and IP-MS based platforms provide multiplexing for several different coding proteins there is not a current platform that can measure all the stablished and emerging biomarkers in one run. The NUcleic acid Linked Immuno-Sandwich Assay (NULISA™) is a mid-throughput platform with antibody-based measurements with a sequencing output that requires 15µL of sample volume to measure more than 100 analytes, including those typically assayed for AD. Here we benchmarked and compared the AD-relevant biomarkers including in the NULISA against validated assays, in both CSF and plasma. Overall, we have found that CSF measures of Aß42/40, NfL, GFAP, and p-tau217 are highly correlated and have similar predictive performance when measured by immunoassay, mass-spectrometry or NULISA. In plasma, p-tau217 shows a performance similar to that reported with other technologies when predicting amyloidosis. Other established and exploratory biomarkers (total tau, p-tau181, NRGN, YKL40, sTREM2, VILIP1 among other) show a wide range of correlation values depending on the fluid and the platform. Our results indicate that the multiplexed immunoassay platform produces reliable results for established biomarkers in CSF that are useful in research settings, with the advantage of measuring additional novel biomarkers using minimal sample volume.

2.
Alzheimers Dement ; 20(5): 3179-3192, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38491912

RESUMO

BACKGROUND: With the availability of disease-modifying therapies for Alzheimer's disease (AD), it is important for clinicians to have tests to aid in AD diagnosis, especially when the presence of amyloid pathology is a criterion for receiving treatment. METHODS: High-throughput, mass spectrometry-based assays were used to measure %p-tau217 and amyloid beta (Aß)42/40 ratio in blood samples from 583 individuals with suspected AD (53% positron emission tomography [PET] positive by Centiloid > 25). An algorithm (PrecivityAD2 test) was developed using these plasma biomarkers to identify brain amyloidosis by PET. RESULTS: The area under the receiver operating characteristic curve (AUC-ROC) for %p-tau217 (0.94) was statistically significantly higher than that for p-tau217 concentration (0.91). The AUC-ROC for the PrecivityAD2 test output, the Amyloid Probability Score 2, was 0.94, yielding 88% agreement with amyloid PET. Diagnostic performance of the APS2 was similar by ethnicity, sex, age, and apoE4 status. DISCUSSION: The PrecivityAD2 blood test showed strong clinical validity, with excellent agreement with brain amyloidosis by PET.


Assuntos
Algoritmos , Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Encéfalo , Espectrometria de Massas , Fragmentos de Peptídeos , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Peptídeos beta-Amiloides/sangue , Feminino , Masculino , Proteínas tau/sangue , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/diagnóstico por imagem , Idoso , Fragmentos de Peptídeos/sangue , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Biomarcadores/sangue , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Curva ROC
3.
JAMA Neurol ; 80(12): 1353-1363, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843849

RESUMO

Importance: Increased white matter hyperintensity (WMH) volume is a common magnetic resonance imaging (MRI) finding in both autosomal dominant Alzheimer disease (ADAD) and late-onset Alzheimer disease (LOAD), but it remains unclear whether increased WMH along the AD continuum is reflective of AD-intrinsic processes or secondary to elevated systemic vascular risk factors. Objective: To estimate the associations of neurodegeneration and parenchymal and vessel amyloidosis with WMH accumulation and investigate whether systemic vascular risk is associated with WMH beyond these AD-intrinsic processes. Design, Setting, and Participants: This cohort study used data from 3 longitudinal cohort studies conducted in tertiary and community-based medical centers-the Dominantly Inherited Alzheimer Network (DIAN; February 2010 to March 2020), the Alzheimer's Disease Neuroimaging Initiative (ADNI; July 2007 to September 2021), and the Harvard Aging Brain Study (HABS; September 2010 to December 2019). Main Outcome and Measures: The main outcomes were the independent associations of neurodegeneration (decreases in gray matter volume), parenchymal amyloidosis (assessed by amyloid positron emission tomography), and vessel amyloidosis (evidenced by cerebral microbleeds [CMBs]) with cross-sectional and longitudinal WMH. Results: Data from 3960 MRI sessions among 1141 participants were included: 252 pathogenic variant carriers from DIAN (mean [SD] age, 38.4 [11.2] years; 137 [54%] female), 571 older adults from ADNI (mean [SD] age, 72.8 [7.3] years; 274 [48%] female), and 318 older adults from HABS (mean [SD] age, 72.4 [7.6] years; 194 [61%] female). Longitudinal increases in WMH volume were greater in individuals with CMBs compared with those without (DIAN: t = 3.2 [P = .001]; ADNI: t = 2.7 [P = .008]), associated with longitudinal decreases in gray matter volume (DIAN: t = -3.1 [P = .002]; ADNI: t = -5.6 [P < .001]; HABS: t = -2.2 [P = .03]), greater in older individuals (DIAN: t = 6.8 [P < .001]; ADNI: t = 9.1 [P < .001]; HABS: t = 5.4 [P < .001]), and not associated with systemic vascular risk (DIAN: t = 0.7 [P = .40]; ADNI: t = 0.6 [P = .50]; HABS: t = 1.8 [P = .06]) in individuals with ADAD and LOAD after accounting for age, gray matter volume, CMB presence, and amyloid burden. In older adults without CMBs at baseline, greater WMH volume was associated with CMB development during longitudinal follow-up (Cox proportional hazards regression model hazard ratio, 2.63; 95% CI, 1.72-4.03; P < .001). Conclusions and Relevance: The findings suggest that increased WMH volume in AD is associated with neurodegeneration and parenchymal and vessel amyloidosis but not with elevated systemic vascular risk. Additionally, increased WMH volume may represent an early sign of vessel amyloidosis preceding the emergence of CMBs.


Assuntos
Doença de Alzheimer , Amiloidose , Substância Branca , Humanos , Feminino , Idoso , Adulto , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Longitudinais , Estudos de Coortes , Estudos Transversais , Imageamento por Ressonância Magnética , Amiloidose/complicações , Proteínas Amiloidogênicas
4.
Acta Neuropathol Commun ; 11(1): 68, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101235

RESUMO

Amyloid PET imaging has been crucial for detecting the accumulation of amyloid beta (Aß) deposits in the brain and to study Alzheimer's disease (AD). We performed a genome-wide association study on the largest collection of amyloid imaging data (N = 13,409) to date, across multiple ethnicities from multicenter cohorts to identify variants associated with brain amyloidosis and AD risk. We found a strong APOE signal on chr19q.13.32 (top SNP: APOE ɛ4; rs429358; ß = 0.35, SE = 0.01, P = 6.2 × 10-311, MAF = 0.19), driven by APOE ɛ4, and five additional novel associations (APOE ε2/rs7412; rs73052335/rs5117, rs1081105, rs438811, and rs4420638) independent of APOE ɛ4. APOE ɛ4 and ε2 showed race specific effect with stronger association in Non-Hispanic Whites, with the lowest association in Asians. Besides the APOE, we also identified three other genome-wide loci: ABCA7 (rs12151021/chr19p.13.3; ß = 0.07, SE = 0.01, P = 9.2 × 10-09, MAF = 0.32), CR1 (rs6656401/chr1q.32.2; ß = 0.1, SE = 0.02, P = 2.4 × 10-10, MAF = 0.18) and FERMT2 locus (rs117834516/chr14q.22.1; ß = 0.16, SE = 0.03, P = 1.1 × 10-09, MAF = 0.06) that all colocalized with AD risk. Sex-stratified analyses identified two novel female-specific signals on chr5p.14.1 (rs529007143, ß = 0.79, SE = 0.14, P = 1.4 × 10-08, MAF = 0.006, sex-interaction P = 9.8 × 10-07) and chr11p.15.2 (rs192346166, ß = 0.94, SE = 0.17, P = 3.7 × 10-08, MAF = 0.004, sex-interaction P = 1.3 × 10-03). We also demonstrated that the overall genetic architecture of brain amyloidosis overlaps with that of AD, Frontotemporal Dementia, stroke, and brain structure-related complex human traits. Overall, our results have important implications when estimating the individual risk to a population level, as race and sex will needed to be taken into account. This may affect participant selection for future clinical trials and therapies.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Feminino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/genética , Estudo de Associação Genômica Ampla , Amiloidose/diagnóstico por imagem , Amiloidose/genética , Amiloide , Apolipoproteínas E/genética
5.
Anal Biochem ; 672: 115156, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37072097

RESUMO

Although the APOE ε4 allele is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), the relationship between apolipoprotein (apoE) and AD pathophysiology is not yet fully understood. Relatively little is known about the apoE protein species, including post-translational modifications, that exist in the human periphery and CNS. To better understand these apoE species, we developed a LC-MS/MS assay that simultaneously quantifies both unmodified and O-glycosylated apoE peptides. The study cohort included 47 older individuals (age 75.6 ± 5.7 years [mean ± standard deviation]), including 23 individuals (49%) with cognitive impairment. Paired plasma and cerebrospinal fluid samples underwent analysis. We quantified O-glycosylation of two apoE protein residues - one in the hinge region and one in the C-terminal region - and found that glycosylation occupancy of the hinge region in the plasma was significantly correlated with plasma total apoE levels, APOE genotype and amyloid status as determined by CSF Aß42/Aß40. A model with plasma glycosylation occupancy, plasma total apoE concentration, and APOE genotype distinguished amyloid status with an AUROC of 0.89. These results suggest that plasma apoE glycosylation levels could be a marker of brain amyloidosis, and that apoE glycosylation may play a role in the pathophysiology of AD.


Assuntos
Doença de Alzheimer , Idoso , Idoso de 80 Anos ou mais , Humanos , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/líquido cefalorraquidiano , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Biomarcadores/metabolismo , Cromatografia Líquida , Genótipo , Glicosilação , Fragmentos de Peptídeos/metabolismo , Placa Amiloide , Espectrometria de Massas em Tandem
6.
Alzheimers Dement (Amst) ; 15(1): e12405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874595

RESUMO

Introduction: Continuous measures of amyloid burden as measured by positron emission tomography (PET) are being used increasingly to stage Alzheimer's disease (AD). This study examined whether cerebrospinal fluid (CSF) and plasma amyloid beta (Aß)42/Aß40 could predict continuous values for amyloid PET. Methods: CSF Aß42 and Aß40 were measured with automated immunoassays. Plasma Aß42 and Aß40 were measured with an immunoprecipitation-mass spectrometry assay. Amyloid PET was performed with Pittsburgh compound B (PiB). The continuous relationships of CSF and plasma Aß42/Aß40 with amyloid PET burden were modeled. Results: Most participants were cognitively normal (427 of 491 [87%]) and the mean age was 69.0 ± 8.8 years. CSF Aß42/Aß40 predicted amyloid PET burden until a relatively high level of amyloid accumulation (69.8 Centiloids), whereas plasma Aß42/Aß40 predicted amyloid PET burden until a lower level (33.4 Centiloids). Discussion: CSF Aß42/Aß40 predicts the continuous level of amyloid plaque burden over a wider range than plasma Aß42/Aß40 and may be useful in AD staging. Highlights: Cerebrospinal fluid (CSF) amyloid beta (Aß)42/Aß40 predicts continuous amyloid positron emission tomography (PET) values up to a relatively high burden.Plasma Aß42/Aß40 is a comparatively dichotomous measure of brain amyloidosis.Models can predict regional amyloid PET burden based on CSF Aß42/Aß40.CSF Aß42/Aß40 may be useful in staging AD.

7.
Alzheimers Res Ther ; 14(1): 195, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575454

RESUMO

The extracellular buildup of amyloid beta (Aß) plaques in the brain is a hallmark of Alzheimer's disease (AD). Detection of Aß pathology is essential for AD diagnosis and for identifying and recruiting research participants for clinical trials evaluating disease-modifying therapies. Currently, AD diagnoses are usually made by clinical assessments, although detection of AD pathology with positron emission tomography (PET) scans or cerebrospinal fluid (CSF) analysis can be used by specialty clinics. These measures of Aß aggregation, e.g. plaques, protofibrils, and oligomers, are medically invasive and often only available at specialized medical centers or not covered by medical insurance, and PET scans are costly. Therefore, a major goal in recent years has been to identify blood-based biomarkers that can accurately detect AD pathology with cost-effective, minimally invasive procedures.To assess the performance of plasma Aß assays in predicting amyloid burden in the central nervous system (CNS), this review compares twenty-one different manuscripts that used measurements of 42 and 40 amino acid-long Aß (Aß42 and Aß40) in plasma to predict CNS amyloid status. Methodologies that quantitate Aß42 and 40 peptides in blood via immunoassay or immunoprecipitation-mass spectrometry (IP-MS) were considered, and their ability to distinguish participants with amyloidosis compared to amyloid PET and CSF Aß measures as reference standards was evaluated. Recent studies indicate that some IP-MS assays perform well in accurately and precisely measuring Aß and detecting brain amyloid aggregates.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Placa Amiloide/diagnóstico por imagem , Fragmentos de Peptídeos/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Amiloide , Proteínas Amiloidogênicas , Biomarcadores/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons/métodos
8.
Nature ; 611(7936): 585-593, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36352225

RESUMO

Macrophages are important players in the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside near the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been sufficiently well studied. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs that express high levels of CD163 and LYVE1 (scavenger receptor proteins), closely associated with the brain arterial tree, and show that LYVE1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces and impairing CNS perfusion and clearance. Ageing-associated alterations in PBMs and impairment of CSF dynamics were restored after intracisternal injection of macrophage colony-stimulating factor. Single-nucleus RNA sequencing data obtained from patients with Alzheimer's disease (AD) and from non-AD individuals point to changes in phagocytosis, endocytosis and interferon-γ signalling on PBMs, pathways that are corroborated in a mouse model of AD. Collectively, our results identify PBMs as new cellular regulators of CSF flow dynamics, which could be targeted pharmacologically to alleviate brain clearance deficits associated with ageing and AD.


Assuntos
Sistema Nervoso Central , Líquido Cefalorraquidiano , Macrófagos , Tecido Parenquimatoso , Animais , Camundongos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Líquido Cefalorraquidiano/metabolismo , Macrófagos/fisiologia , Meninges/citologia , Reologia , Proteínas da Matriz Extracelular/metabolismo , Envelhecimento/metabolismo , Fagocitose , Endocitose , Interferon gama/metabolismo , Tecido Parenquimatoso/citologia , Humanos
9.
Alzheimers Res Ther ; 14(1): 178, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36447240

RESUMO

BACKGROUND: This review describes the research and development process of gantenerumab, a fully human anti-amyloid monoclonal antibody in development to treat early symptomatic and asymptomatic Alzheimer's disease (AD). Anti-amyloid monoclonal antibodies can substantially reverse amyloid plaque pathology and may modify the course of the disease by slowing or stopping its clinical progression. Several molecules targeting amyloid have failed in clinical development due to drug-related factors (e.g., treatment-limiting adverse events, low potency, poor brain penetration), study design/methodological issues (e.g., disease stage, lack of AD pathology confirmation), and other factors. The US Food and Drug Administration's approval of aducanumab, an anti-amyloid monoclonal antibody as the first potential disease-modifying therapy for AD, signaled the value of more than 20 years of drug development, adding to the available therapies the first nominal success since cholinesterase inhibitors and memantine were approved. BODY: Here, we review over 2 decades of gantenerumab development in the context of scientific discoveries in the broader AD field. Key learnings from the field were incorporated into the gantenerumab phase 3 program, including confirmed amyloid positivity as an entry criterion, an enriched clinical trial population to ensure measurable clinical decline, data-driven exposure-response models to inform a safe and efficacious dosing regimen, and the use of several blood-based biomarkers. Subcutaneous formulation for more pragmatic implementation was prioritized as a key feature from the beginning of the gantenerumab development program. CONCLUSION: The results from the gantenerumab phase 3 programs are expected by the end of 2022 and will add critical information to the collective knowledge on the search for effective AD treatments.


Assuntos
Doença de Alzheimer , Amiloidose , Estados Unidos , Humanos , Doença de Alzheimer/tratamento farmacológico , Proteínas Amiloidogênicas , Placa Amiloide , Doenças Assintomáticas
10.
Brain ; 145(10): 3594-3607, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35580594

RESUMO

The extent to which the pathophysiology of autosomal dominant Alzheimer's disease corresponds to the pathophysiology of 'sporadic' late onset Alzheimer's disease is unknown, thus limiting the extrapolation of study findings and clinical trial results in autosomal dominant Alzheimer's disease to late onset Alzheimer's disease. We compared brain MRI and amyloid PET data, as well as CSF concentrations of amyloid-ß42, amyloid-ß40, tau and tau phosphorylated at position 181, in 292 carriers of pathogenic variants for Alzheimer's disease from the Dominantly Inherited Alzheimer Network, with corresponding data from 559 participants from the Alzheimer's Disease Neuroimaging Initiative. Imaging data and CSF samples were reprocessed as appropriate to guarantee uniform pipelines and assays. Data analyses yielded rates of change before and after symptomatic onset of Alzheimer's disease, allowing the alignment of the ∼30-year age difference between the cohorts on a clinically meaningful anchor point, namely the participant age at symptomatic onset. Biomarker profiles were similar for both autosomal dominant Alzheimer's disease and late onset Alzheimer's disease. Both groups demonstrated accelerated rates of decline in cognitive performance and in regional brain volume loss after symptomatic onset. Although amyloid burden accumulation as determined by PET was greater after symptomatic onset in autosomal dominant Alzheimer's disease than in late onset Alzheimer's disease participants, CSF assays of amyloid-ß42, amyloid-ß40, tau and p-tau181 were largely overlapping in both groups. Rates of change in cognitive performance and hippocampal volume loss after symptomatic onset were more aggressive for autosomal dominant Alzheimer's disease participants. These findings suggest a similar pathophysiology of autosomal dominant Alzheimer's disease and late onset Alzheimer's disease, supporting a shared pathobiological construct.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Imageamento por Ressonância Magnética/métodos , Biomarcadores
11.
JAMA Netw Open ; 5(4): e228392, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35446396

RESUMO

Importance: The diagnostic evaluation for Alzheimer disease may be improved by a blood-based diagnostic test identifying presence of brain amyloid plaque pathology. Objective: To determine the clinical performance associated with a diagnostic algorithm incorporating plasma amyloid-ß (Aß) 42:40 ratio, patient age, and apoE proteotype to identify brain amyloid status. Design, Setting, and Participants: This cohort study includes analysis from 2 independent cross-sectional cohort studies: the discovery cohort of the Plasma Test for Amyloidosis Risk Screening (PARIS) study, a prospective add-on to the Imaging Dementia-Evidence for Amyloid Scanning study, including 249 patients from 2018 to 2019, and MissionAD, a dataset of 437 biobanked patient samples obtained at screenings during 2016 to 2019. Data were analyzed from May to November 2020. Exposures: Amyloid detected in blood and by positron emission tomography (PET) imaging. Main Outcomes and Measures: The main outcome was the diagnostic performance of plasma Aß42:40 ratio, together with apoE proteotype and age, for identifying amyloid PET status, assessed by accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Results: All 686 participants (mean [SD] age 73.2 [6.3] years; 368 [53.6%] men; 378 participants [55.1%] with amyloid PET findings) had symptoms of mild cognitive impairment or mild dementia. The AUC of plasma Aß42:40 ratio for PARIS was 0.79 (95% CI, 0.73-0.85) and 0.86 (95% CI, 0.82-0.89) for MissionAD. Ratio cutoffs for Aß42:40 based on the Youden index were similar between cohorts (PARIS: 0.089; MissionAD: 0.092). A logistic regression model (LRM) incorporating Aß42:40 ratio, apoE proteotype, and age improved diagnostic performance within each cohort (PARIS: AUC, 0.86 [95% CI, 0.81-0.91]; MissionAD: AUC, 0.89 [95% CI, 0.86-0.92]), and overall accuracy was 78% (95% CI, 72%-83%) for PARIS and 83% (95% CI, 79%-86%) for MissionAD. The model developed on the prospectively collected samples from PARIS performed well on the MissionAD samples (AUC, 0.88 [95% CI, 0.84-0.91]; accuracy, 78% [95% CI, 74%-82%]). Training the LRM on combined cohorts yielded an AUC of 0.88 (95% CI, 0.85-0.91) and accuracy of 81% (95% CI, 78%-84%). The output of this LRM is the Amyloid Probability Score (APS). For clinical use, 2 APS cutoff values were established yielding 3 categories, with low, intermediate, and high likelihood of brain amyloid plaque pathology. Conclusions and Relevance: These findings suggest that this blood biomarker test could allow for distinguishing individuals with brain amyloid-positive PET findings from individuals with amyloid-negative PET findings and serve as an aid for Alzheimer disease diagnosis.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico por imagem , Amiloide , Peptídeos beta-Amiloides/análise , Apolipoproteínas E/genética , Disfunção Cognitiva/diagnóstico por imagem , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Fragmentos de Peptídeos , Placa Amiloide/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Probabilidade , Estudos Prospectivos
12.
Neurology ; 99(3): e245-e257, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35450967

RESUMO

BACKGROUND AND OBJECTIVES: To evaluate whether plasma biomarkers of amyloid (Aß42/Aß40), tau (p-tau181 and p-tau231), and neuroaxonal injury (neurofilament light chain [NfL]) detect brain amyloidosis consistently across racial groups. METHODS: Individuals enrolled in studies of memory and aging who self-identified as African American (AA) were matched 1:1 to self-identified non-Hispanic White (NHW) individuals by age, APOE ε4 carrier status, and cognitive status. Each participant underwent blood and CSF collection, and amyloid PET was performed in 103 participants (68%). Plasma Aß42/Aß40 was measured by a high-performance immunoprecipitation-mass spectrometry assay. Plasma p-tau181, p-tau231, and NfL were measured by Simoa immunoassays. CSF Aß42/Aß40 and amyloid PET status were used as primary and secondary reference standards of brain amyloidosis, respectively. RESULTS: There were 76 matched pairs of AA and NHW participants (n = 152 total). For both AA and NHW groups, the median age was 68.4 years, 42% were APOE ε4 carriers, and 91% were cognitively normal. AA were less likely than NHW participants to have brain amyloidosis by CSF Aß42/Aß40 (22% vs 43% positive; p = 0.003). The receiver operating characteristic area under the curve of CSF Aß42/Aß40 status with the plasma biomarkers was as follows: Aß42/Aß40, 0.86 (95% CI 0.79-0.92); p-tau181, 0.76 (0.68-0.84); p-tau231, 0.69 (0.60-0.78); and NfL, 0.64 (0.55-0.73). In models predicting CSF Aß42/Aß40 status with plasma Aß42/Aß40 that included covariates (age, sex, APOE ε4 carrier status, race, and cognitive status), race did not affect the probability of CSF Aß42/Aß40 positivity. In similar models based on plasma p-tau181, p-tau231, or NfL, AA participants had a lower probability of CSF Aß42/Aß40 positivity (odds ratio 0.31 [95% CI 0.13-0.73], 0.30 [0.13-0.71], and 0.27 [0.12-0.64], respectively). Models of amyloid PET status yielded similar findings. DISCUSSION: Models predicting brain amyloidosis using a high-performance plasma Aß42/Aß40 assay may provide an accurate and consistent measure of brain amyloidosis across AA and NHW groups, but models based on plasma p-tau181, p-tau231, and NfL may perform inconsistently and could result in disproportionate misdiagnosis of AA individuals.


Assuntos
Doença de Alzheimer , Amiloidose , Idoso , Doença de Alzheimer/diagnóstico , Amiloide , Peptídeos beta-Amiloides/metabolismo , Amiloidose/diagnóstico , Apolipoproteína E4 , Biomarcadores , Encéfalo/diagnóstico por imagem , Humanos , Filamentos Intermediários , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteínas tau
13.
JAMA Neurol ; 79(3): 228-243, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35099509

RESUMO

IMPORTANCE: One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design. OBJECTIVE: To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria. EXPOSURES: Alzheimer disease biomarkers detected on PET or in CSF. MAIN OUTCOMES AND MEASURES: Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations. RESULTS: Among the 19 097 participants (mean [SD] age, 69.1 [9.8] years; 10 148 women [53.1%]) included, 10 139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P = .04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P = .004), subjective cognitive decline (9%; 95% CI, 3%-15%; P = .005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P = .004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P = .18). CONCLUSIONS AND RELEVANCE: This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas Amiloidogênicas , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/epidemiologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Prevalência , Proteínas tau/líquido cefalorraquidiano
14.
Neurology ; 98(7): e688-e699, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906975

RESUMO

BACKGROUND AND OBJECTIVES: To determine the diagnostic accuracy of a plasma Aß42/Aß40 assay in classifying amyloid PET status across global research studies using samples collected by multiple centers that utilize different blood collection and processing protocols. METHODS: Plasma samples (n = 465) were obtained from 3 large Alzheimer disease (AD) research cohorts in the United States (n = 182), Australia (n = 183), and Sweden (n = 100). Plasma Aß42/Aß40 was measured by a high precision immunoprecipitation mass spectrometry (IPMS) assay and compared to the reference standards of amyloid PET and CSF Aß42/Aß40. RESULTS: In the combined cohort of 465 participants, plasma Aß42/Aß40 had good concordance with amyloid PET status (receiver operating characteristic area under the curve [AUC] 0.84, 95% confidence interval [CI] 0.80-0.87); concordance improved with the inclusion of APOE ε4 carrier status (AUC 0.88, 95% CI 0.85-0.91). The AUC of plasma Aß42/Aß40 with CSF amyloid status was 0.85 (95% CI 0.78-0.91) and improved to 0.93 (95% CI 0.89-0.97) with APOE ε4 status. These findings were consistent across the 3 cohorts, despite differences in protocols. The assay performed similarly in both cognitively unimpaired and impaired individuals. DISCUSSION: Plasma Aß42/Aß40 is a robust measure for detecting amyloid plaques and can be utilized to aid in the diagnosis of AD, identify those at risk for future dementia due to AD, and improve the diversity of populations enrolled in AD research and clinical trials. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that plasma Aß42/Aß40, as measured by a high precision IPMS assay, accurately diagnoses brain amyloidosis in both cognitively unimpaired and impaired research participants.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Fragmentos de Peptídeos , Placa Amiloide , Tomografia por Emissão de Pósitrons
15.
Neurology ; 97(18): e1823-e1834, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34504028

RESUMO

BACKGROUND AND OBJECTIVES: To predict when cognitively normal individuals with brain amyloidosis will develop symptoms of Alzheimer disease (AD). METHODS: Brain amyloid burden was measured by amyloid PET with Pittsburgh compound B. The mean cortical standardized uptake value ratio (SUVR) was transformed into a timescale with the use of longitudinal data. RESULTS: Amyloid accumulation was evaluated in 236 individuals who underwent >1 amyloid PET scan. The average age was 66.5 ± 9.2 years, and 12 individuals (5%) had cognitive impairment at their baseline amyloid PET scan. A tipping point in amyloid accumulation was identified at a low level of amyloid burden (SUVR 1.2), after which nearly all individuals accumulated amyloid at a relatively consistent rate until reaching a high level of amyloid burden (SUVR 3.0). The average time between levels of amyloid burden was used to estimate the age at which an individual reached SUVR 1.2. Longitudinal clinical diagnoses for 180 individuals were aligned by the estimated age at SUVR 1.2. In the 22 individuals who progressed from cognitively normal to a typical AD dementia syndrome, the estimated age at which an individual reached SUVR 1.2 predicted the age at symptom onset (R 2 = 0.54, p < 0.0001, root mean square error [RMSE] 4.5 years); the model was more accurate after exclusion of 3 likely misdiagnoses (R 2 = 0.84, p < 0.0001, RMSE 2.8 years). CONCLUSION: The age at symptom onset in sporadic AD is strongly correlated with the age at which an individual reaches a tipping point in amyloid accumulation.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico por imagem , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/diagnóstico por imagem , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons
16.
Ann Clin Transl Neurol ; 8(9): 1817-1830, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34342183

RESUMO

OBJECTIVE: Tau hyperphosphorylation at threonine 217 (pT217) in cerebrospinal fluid (CSF) has recently been linked to early amyloidosis and could serve as a highly sensitive biomarker for Alzheimer's disease (AD). However, it remains unclear whether other tauopathies induce pT217 modifications. To determine if pT217 modification is specific to AD, CSF pT217 was measured in AD and other tauopathies. METHODS: Using immunoprecipitation and mass spectrometry methods, we compared CSF T217 phosphorylation occupancy (pT217/T217) and amyloid-beta (Aß) 42/40 ratio in cognitively normal individuals and those with symptomatic AD, progressive supranuclear palsy, corticobasal syndrome, and sporadic and familial frontotemporal dementia. RESULTS: Individuals with AD had high CSF pT217/T217 and low Aß42/40. In contrast, cognitively normal individuals and the majority of those with 4R tauopathies had low CSF pT217/T217 and normal Aß 42/40. We identified a subgroup of individuals with increased CSF pT217/T217 and normal Aß 42/40 ratio, most of whom were MAPT R406W mutation carriers. Diagnostic accuracies of CSF Aß 42/40 and CSF pT217/T217, alone and in combination were compared. We show that CSF pT217/T217 × CSF Aß 42/40 is a sensitive composite biomarker that can separate MAPT R406W carriers from cognitively normal individuals and those with other tauopathies. INTERPRETATION: MAPT R406W is a tau mutation that leads to 3R+4R tauopathy similar to AD, but without amyloid neuropathology. These findings suggest that change in CSF pT217/T217 ratio is not specific to AD and might reflect common downstream tau pathophysiology common to 3R+4R tauopathies.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Tauopatias/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação/fisiologia , Tomografia por Emissão de Pósitrons , Tauopatias/diagnóstico por imagem , Tauopatias/genética , Proteínas tau/genética
17.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805778

RESUMO

Plasma amyloid-beta (Aß) has long been investigated as a blood biomarker candidate for Cerebral Amyloid Angiopathy (CAA), however previous findings have been inconsistent which could be attributed to the use of less sensitive assays. This study investigates plasma Aß alterations between pre-symptomatic Dutch-type hereditary CAA (D-CAA) mutation-carriers (MC) and non-carriers (NC) using two Aß measurement platforms. Seventeen pre-symptomatic members of a D-CAA pedigree were assembled and followed up 3-4 years later (NC = 8; MC = 9). Plasma Aß1-40 and Aß1-42 were cross-sectionally and longitudinally analysed at baseline (T1) and follow-up (T2) and were found to be lower in MCs compared to NCs, cross-sectionally after adjusting for covariates, at both T1(Aß1-40: p = 0.001; Aß1-42: p = 0.0004) and T2 (Aß1-40: p = 0.001; Aß1-42: p = 0.016) employing the Single Molecule Array (Simoa) platform, however no significant differences were observed using the xMAP platform. Further, pairwise longitudinal analyses of plasma Aß1-40 revealed decreased levels in MCs using data from the Simoa platform (p = 0.041) and pairwise longitudinal analyses of plasma Aß1-42 revealed decreased levels in MCs using data from the xMAP platform (p = 0.041). Findings from the Simoa platform suggest that plasma Aß may add value to a panel of biomarkers for the diagnosis of pre-symptomatic CAA, however, further validation studies in larger sample sets are required.


Assuntos
Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Angiopatia Amiloide Cerebral Familiar/genética , Fragmentos de Peptídeos/genética , Adulto , Peptídeos beta-Amiloides/sangue , Precursor de Proteína beta-Amiloide/sangue , Doenças Assintomáticas , Biomarcadores/sangue , Angiopatia Amiloide Cerebral Familiar/sangue , Angiopatia Amiloide Cerebral Familiar/diagnóstico , Angiopatia Amiloide Cerebral Familiar/patologia , Progressão da Doença , Feminino , Expressão Gênica , Genes Dominantes , Heterozigoto , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mutação , Testes Neuropsicológicos , Linhagem , Fragmentos de Peptídeos/sangue
18.
J Alzheimers Dis ; 79(2): 895-903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361604

RESUMO

BACKGROUND: Cerebral amyloid angiopathy (CAA) is one of the major causes of intracerebral hemorrhage and vascular dementia in older adults. Early diagnosis will provide clinicians with an opportunity to intervene early with suitable strategies, highlighting the importance of pre-symptomatic CAA biomarkers. OBJECTIVE: Investigation of pre-symptomatic CAA related blood metabolite alterations in Dutch-type hereditary CAA mutation carriers (D-CAA MCs). METHODS: Plasma metabolites were measured using mass-spectrometry (AbsoluteIDQ® p400 HR kit) and were compared between pre-symptomatic D-CAA MCs (n = 9) and non-carriers (D-CAA NCs, n = 8) from the same pedigree. Metabolites that survived correction for multiple comparisons were further compared between D-CAA MCs and additional control groups (cognitively unimpaired adults). RESULTS: 275 metabolites were measured in the plasma, 22 of which were observed to be significantly lower in theD-CAAMCs compared to D-CAA NCs, following adjustment for potential confounding factors age, sex, and APOE ε4 (p < 00.05). After adjusting for multiple comparisons, only spermidine remained significantly lower in theD-CAAMCscompared to theD-CAA NCs (p  < 0.00018). Plasma spermidine was also significantly lower in D-CAA MCs compared to the cognitively unimpaired young adult and older adult groups (p < 0.01). Spermidinewas also observed to correlate with CSF Aß40 (rs = 0.621, p = 0.024), CSF Aß42 (rs = 0.714, p = 0.006), and brain Aß load (rs = -0.527, p = 0.030). CONCLUSION: The current study provides pilot data on D-CAA linked metabolite signals, that also associated with Aß neuropathology and are involved in several biological pathways that have previously been linked to neurodegeneration and dementia.


Assuntos
Angiopatia Amiloide Cerebral Familiar/sangue , Adulto , Doenças Assintomáticas , Biomarcadores/sangue , Estudos de Casos e Controles , Angiopatia Amiloide Cerebral Familiar/genética , Angiopatia Amiloide Cerebral Familiar/metabolismo , Feminino , Heterozigoto , Humanos , Masculino , Espectrometria de Massas , Testes de Estado Mental e Demência , Metabolômica , Neuroimagem , Linhagem , Placa Amiloide/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Espermidina/sangue , Espermidina/metabolismo
19.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842621

RESUMO

We found interactions between dopamine and oxidative damage in the striatum involved in advanced neurodegeneration, which probably change the microglial phenotype. We observed possible microglia dystrophy in the striatum of neurodegenerative brains. To investigate the interactions between oxidative damage and microglial phenotype, we quantified myeloperoxidase (MPO), poly (ADP-Ribose) (PAR), and triggering receptors expressed on myeloid cell 2 (TREM2) using enzyme-linked immunosorbent assay (ELISA). To test the correlations of microglia dystrophy and tauopathy, we quantified translocator protein (TSPO) and tau fibrils using autoradiography. We chose the caudate and putamen of Lewy body diseases (LBDs) (Parkinson's disease, Parkinson's disease dementia, and Dementia with Lewy body), Alzheimer's disease (AD), and control brains and genotyped for TSPO, TREM2, and bridging integrator 1 (BIN1) genes using single nucleotide polymorphisms (SNP) assays. TREM2 gene variants were absent across all samples. However, associations between TSPO and BIN1 gene polymorphisms and TSPO, MPO, TREM2, and PAR level variations were found. PAR levels reduced significantly in the caudate of LBDs. TSPO density and tau fibrils decreased remarkably in the striatum of LBDs but increased in AD. Oxidative damage, induced by misfolded tau proteins and dopamine metabolism, causes microglia dystrophy or senescence during the late stage of LBDs. Consequently, microglia dysfunction conversely reduces tau propagation. The G allele of the BIN1 gene is a potential risk factor for tauopathy.


Assuntos
Corpo Estriado/metabolismo , Microglia/patologia , Doenças Neurodegenerativas/patologia , Tauopatias/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Estudos de Casos e Controles , Corpo Estriado/patologia , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/fisiologia , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Peroxidase/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Tauopatias/genética , Proteínas Supressoras de Tumor/genética , Proteínas tau/metabolismo
20.
Acta Neuropathol Commun ; 8(1): 149, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854776

RESUMO

Alzheimer's disease (AD) neuropathologic change is characterized by amyloid plaques and neurofibrillary tangles (NFTs) that consist of aggregated amyloid beta (Abeta) and hyperphosphorylated tau proteins (p-tau), respectively. Although the global relationship between Abeta and p-tau has been studied for decades, it is still unclear whether a regional correlation exists between Abeta and p-tau in the human brain. Recent studies in cerebrospinal fluid (CSF) have suggested that tau phosphorylation at specific sites such as T217 is modified at an early stage of AD when amyloid plaques become detectable. We applied biochemical and mass spectrometry methods in human brain samples with and without Abeta plaque pathology to measure site-specific phosphorylation occupancies in soluble and insoluble tau. Our quantitative results identified multiple residues specifically hyper-phosphorylated in AD, including at sites T111, T153, S184 (or S185), T205, S208, T217, S262, and S285 in brain soluble tau. In contrast, the most enriched phosphorylated residues in brain insoluble tau were T111, S113, T153, T181, S199, S202, T205, T217, T231, S262, and S396. Tau phosphorylation occupancies in the insoluble fraction were relatively constant across brain regions, suggesting that tau has a consistent phosphorylation pattern once it has aggregated into NFTs. We did not find regional association between Abeta42 and insoluble tau. However, the phosphorylation profile of soluble tau in AD brain was highly correlated to that in AD CSF, which was analyzed in a previous study. We also found a higher regional association between total Abeta42 and soluble tau phosphorylation occupancy at residues T111, T153 and T217 in the brain. This study provides insights into regional interactions between amyloidosis and specific tau phosphorylated residues in the human brain and may explain the specific increases of tau species phosphorylation observed in AD CSF.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Encéfalo/patologia , Feminino , Humanos , Masculino , Fosforilação , Proteínas tau/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA