Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 56(11): 1765-74, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17426968

RESUMO

Therapeutic treatment with hu14.18-IL-2 immunocytokine (IC) or Flt3-L (FL) protein is initially effective at resolving established intradermal NXS2 neuroblastoma tumors in mice. However, many treated animals develop recurrent disease. We previously found that tumors recurring following natural killer (NK) mediated IC treatment show augmented MHC class I expression, while the tumors that recurred following T cell dependent Flt3-L treatment exhibited decreased MHC class I expression. We hypothesized that this divergent MHC modulation on recurrent tumors was due to therapy-specific immunoediting. We further postulated that combining IC and Flt3-L treatments might decrease the likelihood of recurrent disease by preventing MHC modulation as a mechanism for immune escape. We now report that combinatorial treatment of FL plus hu14.18-IL-2 IC provides greater antitumor benefit than treatment with either alone, suppressing development of recurrent disease. We administered FL by gene therapy using a clinically relevant approach: hydrodynamic limb vein (HLV) delivery of DNA for transgene expression by myofibers. Delivery of FL DNA by HLV injection in mice resulted in systemic expression of >10 ng/ml of FL in blood at day 3, and promoted up to a fourfold and tenfold increase in splenic NK and dendritic cells (DCs), respectively. Furthermore, the combination of FL gene therapy plus suboptimal IC treatment induced a greater expansion in the absolute number of splenic NK and DCs than achieved by individual component treatments. Mice that received combined FL gene therapy plus IC exhibited complete and durable resolution of established NXS2 tumors, and demonstrated protection from subsequent rechallenge with NXS2 tumor.


Assuntos
Terapia Genética , Memória Imunológica , Interleucina-2/farmacologia , Proteínas de Membrana/farmacologia , Adjuvantes Imunológicos/genética , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/metabolismo , Baço/imunologia , Fatores de Tempo , Evasão Tumoral/imunologia
2.
Biotechniques ; 40(2): 199-208, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16526410

RESUMO

Genetic immunization is an attractive approach to generate antibodies because native proteins are expressed in vivo with normal posttranscriptional modifications, avoiding time-consuming and costly antigen isolation or synthesis. Hydrodynamic tail or limb vein delivery of naked plasmid DNA expression vectors was used to induce antigen-specific antibodies in mice, rats, and rabbits. Both methods allowed the efficient generation of high-titer, antigen-specific antibodies with an overall success rate of Western detectable antibodies of 78% and 92%, respectively. High-titer antibodies were typically present after 3 hydrodynamic tail vein plasmid DNA deliveries, 5 weeks after the initial injection (i.e., prime). For hydrodynamic limb vein plasmid DNA delivery, two deliveries were sufficient to induce high-titer antibody levels. Tail vein delivery was less successful at generating antibodies directed against secreted proteins as compared with limb vein delivery. Material for screening was generated by,transfection of the immunization vector into mammalian cell lines. The cell line (COS-7) that produced the highest level of antigen expression performed best in Western blot analysis screens. In summary, intravenous delivery of antigen-expressing plasmid DNA vectors is an effective genetic immunization method for the induction of antigen-specific antibodies in small and large research animals.


Assuntos
Formação de Anticorpos , Técnicas de Transferência de Genes , Plasmídeos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Western Blotting , Antígenos CD4/genética , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Vetores Genéticos , Células HeLa , Humanos , Hibridomas , Imuno-Histoquímica , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos ICR , Coelhos , Ratos , Ratos Sprague-Dawley , Transfecção , Vacinas de DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA