Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Antimicrob Agents Chemother ; 68(4): e0165123, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38412000

RESUMO

Organic and synthetic chemistry plays a crucial role in drug discovery fields. Moreover, chemical modifications of available molecules to enhance their efficacy, selectivity and safety have been considered as an attractive approach for the development of new bioactive agents. Indoles, a versatile group of natural heterocyclic compounds, have been widely used in pharmaceutical industry due to their broad spectrum of activities including antimicrobial, antitumoral and anti-inflammatory among others. Herein, we report the amoebicidal activity of different indole analogs on Acanthamoeba castellanii Neff. Among the 40 tested derivatives, eight molecules were able to inhibit this protistan parasite. The structure-activity relationship (SAR) analysis of their anti-Acanthamoeba activity would suggest that a carboxylation of C-3 position and the incorporation of halogen as chlorine/fluorine would enhance their biological profile, presumably by increasing their lipophilicity and therefore their ability to cross the cell membrane. Fluorescence image base system was used to investigate the effect of indole 6o c-6 on the cytoskeleton network and various programmed cell death features. We were able to highlight that the methyl 6-chloro-1H-indole-3-carboxylate could induce program cell death by the mitochondrial dysfunction.


Assuntos
Acanthamoeba castellanii , Amebicidas , Amebicidas/farmacologia , Morte Celular , Apoptose , Indóis/farmacologia
2.
Antioxidants (Basel) ; 12(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38136200

RESUMO

Acanthamoeba is a ubiquitous genus of amoebae that can act as opportunistic parasites in both humans and animals, causing a variety of ocular, nervous and dermal pathologies. Despite advances in Acanthamoeba therapy, the management of patients with Acanthamoeba infections remains a challenge for health services. Therefore, there is a need to search for new active substances against Acanthamoebae. In the present study, we evaluated the amoebicidal activity of nitroxoline against the trophozoite and cyst stages of six different strains of Acanthamoeba. The strain A. griffini showed the lowest IC50 value in the trophozoite stage (0.69 ± 0.01 µM), while the strain A. castellanii L-10 showed the lowest IC50 value in the cyst stage (0.11 ± 0.03 µM). In addition, nitroxoline induced in treated trophozoites of A. culbertsoni features compatibles with apoptosis and autophagy pathways, including chromatin condensation, mitochondrial malfunction, oxidative stress, changes in cell permeability and the formation of autophagic vacuoles. Furthermore, proteomic analysis of the effect of nitroxoline on trophozoites revealed that this antibiotic induced the overexpression and the downregulation of proteins involved in the apoptotic process and in metabolic and biosynthesis pathways.

3.
Int J Antimicrob Agents ; 62(5): 106943, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37541529

RESUMO

BACKGROUND: Guidelines recommend 5-7 days of antibiotic treatment in patients with surgical infection and adequate source control. This nationwide stewardship intervention aimed to reduce the duration of treatments in surgical patients to <7 days. METHODS: Prospective cohort study evaluating surgical patients receiving antibiotics ≥7 days in 32 hospitals. Indication for treatment, quality of source control, type of recommendations issued, and adherence to the recommendations were analysed. Temporal trends in the percentages of patients with treatment >7 days were evaluated using a linear regression model and Pearson's correlation coefficients. RESULTS: A total of 32 499 patients were included. Of these, 13.7% had treatments ≥7 days. In all, 3912 stewardship interventions were performed, primarily in general surgery (90.7%) and urology (8.1%). The main types of infection were intra-abdominal (73.4%), skin/soft tissues (9.8%) and urinary (9.2%). The septic focus was considered controlled in 59.9% of cases. Out of 5458 antibiotic prescriptions, the most frequently analysed drugs were piperacillin/tazobactam (21.7%), metronidazole (11.2%), amoxicillin/clavulanate (10.3%), meropenem (10.7%), ceftriaxone (9.3%) and ciprofloxacin (6.7%). The main recommendations issued were: treatment discontinuation (35.0%), maintenance (40.0%) or de-escalation (15.5%), and the overall adherence rate was 91.5%. With adequate source control, the most frequent recommendation was to terminate treatment (51.2%). Throughout the study period, a significant decrease in the percentage of prolonged treatments was observed (Pc=-0.69;P < 0.001). CONCLUSIONS: This stewardship programme reduced the duration of treatments in surgical departments. Preference was given to general surgery services, intra-abdominal infection, and beta-lactam antibiotics, including carbapenems. Adherence to the issued recommendations was high.


Assuntos
Gestão de Antimicrobianos , Humanos , Estudos Prospectivos , Estudos de Coortes , Antibacterianos/uso terapêutico , Combinação Piperacilina e Tazobactam/uso terapêutico
4.
Biomed Pharmacother ; 158: 114185, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916403

RESUMO

Free Living Amoeba (FLA) infections caused by Acanthamoeba genus include chronic nervous system diseases such as Granulomatous Amoebic Encephalitis (GAE), or a severe eye infection known as Acanthamoeba keratitis (AK). Current studies focused on therapy against these diseases are aiming to find novel compounds with amoebicidal activity and low toxicity to human tissues. Brown algae, such as Gongolaria abies-marina (previously known as Cystoseira abies-marina, S.G. Gmelin), presents bioactive molecules of interest, including some with antiprotozoal activity. In this study, six meroterpenoids were isolated and purified from the species Gongolaria abies-marina. Gongolarones A (1), B (2) and C (3) were identified as new compounds. Additionally, cystomexicone B (4), 1'-methoxyamentadione (5) and 6Z-1'-methoxyamentadione (6) were isolated. All compounds exhibited amoebicidal activity against Acanthamoeba castellanii Neff, A. polyphaga and A. griffini strains. Gongolarones A (1) and C (3) showed the lowest IC50 values against the two stages of these amoebae (trophozoite and cyst). Structure-activity relationship revealed that the cyclization by ether formation from C-12 to C-15 of 1, and the isomerization Δ2 t to Δ3 t of 3, increased the antiamoeboid activity of both compounds. Furthermore, gongolarones A (1) and C (3) triggered chromatin condensation, mitochondrial malfunction, oxidative stress, and disorganization of the tubulin-actin cytoskeleton in treated trophozoites. Moreover, transmission electron microscopy (TEM) images analysis revealed that compounds 1 and 3 induced autophagy process and inhibited the encystation process. All those results suggest that both compounds could induce programmed cell death (PCD) in Acanthamoeba.


Assuntos
Acanthamoeba castellanii , Amebicidas , Animais , Humanos , Amebicidas/farmacologia , Trofozoítos , Citoesqueleto de Actina
5.
Eur J Pharm Biopharm ; 180: 11-22, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162636

RESUMO

Statins are effective sterol lowering agents with high amoebicidal activity. Nevertheless, due to their poor aqueous solubility, they remain underused especially in eye drop formulation. The aim of the present study is to develop Pitavastatin loaded nanoparticles suitable for ophthalmic administration and designed for the management of Acanthamoeba Keratitis. These nanocarriers are aimed to solve both the ophthalmic route-associated problems and the limited aqueous drug solubility issues of Pitavastatin. Nanoparticles were obtained by a nanoprecipitation-solvent displacement method and their amoebicidal activity was evaluated against four strains of Acanthamoeba: A. castellanii Neff, A. polyphaga, A. griffini and A. quina. In Acanthamoeba polyphaga, the effect of the present nanoparticles was investigated with respect to the microtubule distribution and several programmed cell death features. Nanoparticles were able to eliminate all the tested strains and Acanthamoeba polyphaga was determined to be the most resistance strain. Nanoparticles induced chromatin condensation, autophagic vacuoles and mitochondria dysfunction.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Amebicidas , Nanopartículas , Humanos , Ceratite por Acanthamoeba/tratamento farmacológico , Administração Oftálmica , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Morte Celular , Autofagia
6.
Biomed Pharmacother ; 150: 113062, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658232

RESUMO

The genus Acanthamoeba is characterized by being a group of ubiquitous and free-living amoebae that inhabit a variety of environments. Generally, human infections by this parasite are associated with Acanthamoeba keratitis, especially in contact lens wearers, and with chronic but fatal granulomatous amoebic meningoencephalitis. Current treatments used for eradication of amoeba from infection sites represent a challenge for pharmacotherapy, due to the lack of effective treatment and the amoebae highly resistant to anti-amoebic drugs. In this study, we describe the results of the assessment of the IC50 of 10 isobenzofuran-1(3H)-one derivatives (QOET) against four Acanthamoeba strains. The compounds QOET-3 and QOET-9 were the selected derivatives with the lowest IC50 in A. castellanii Neff trophozoites (73.71 ± 0.25 and 69.99 ± 15.32 µM, respectively). Interestingly, analysis of the compound effects on the cell apoptosis-like features showed that both active molecules triggered programmed cell death (PCD) in A. castellanii Neff. The results obtained in this study highlights that isobenzofuranone derivatives could represent an interesting source for developing novel antiamoebic drugs.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Ceratite por Acanthamoeba/parasitologia , Amebicidas/farmacologia , Animais , Morte Celular , Humanos , Trofozoítos
7.
Parasitol Res ; 121(8): 2399-2404, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660958

RESUMO

Free-living amoebae (FLA) are protozoa which have been reported in different countries worldwide from diverse sources (water, soil, dust, air), contributing to the environmental microbiological contamination. Most of the FLA species present a life cycle with two different phases: an active vegetative and physiologically form named trophozoite, and an extremely resistant phase called cyst. Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris, Sapinia pedata, Vahlkampfia spp., Paravahlkampfia spp. and Vermamoeba vermiformis have been reported not only as causal agents of several opportunistic diseases including fatal encephalitis or epithelial disorders, but also as capable to favour the intracellular survival of common pathogenic bacteria, which could avoid the typical water disinfection systems, non-effective against FLAs cysts. Even though Santiago Island possesses high levels of humidity compared to the rest of the archipelago of Cape Verde, the water resources are scarce. Therefore, it is important to carry out proper microbiological quality controls, which currently do not contemplate the FLA presence in most of the countries. In the present work, we have reported the presence of Acanthamoeba spp. (69.2%); Vannella spp. (15.4%); Vermamoeba vermiformis (7.7%) and the recently discovered Stenamoeba dejonckheerei (7.7%) in different water sources of Santiago Island.


Assuntos
Acanthamoeba , Amoeba , Lobosea , Cabo Verde , Água
8.
Pathogens ; 11(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35631129

RESUMO

Acanthamoeba is a free-living amoeba genus able to cause severe infections, such as Granulomatous amoebic encephalitis (GAE), epithelial disorders and a sight-threatening disease called Acanthamoeba keratitis (AK) [...].

9.
J Glob Antimicrob Resist ; 30: 468-473, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35640869

RESUMO

OBJECTIVES: Acanthamoeba keratitis is a severe corneal infection caused by a ubiquitous opportunistic protozoan pathogen known as acanthamoeba. For the last decade, the approach to treating this infection typically includes the use of polyhexamethylene biguanide (0.02%) and/or chlorhexidine (Chx) (0.02%). Although chlorhexidine is reportedly effective, its mode of action towards this type of cell is not clear. The aim of this work was to study the effect of chlorhexidine on the oxidative status of Acanthamoeba polyphaga. METHODS: The effect of chlorhexidine (Chx) on the oxidative state of Acanthamoeba polyphaga was studied using different antiradical methods including ABTS, DPPH and FRAP and measuring the activity of a couple of antioxidant enzyme namely SOD, NADH-FRD and SDH. RESULTS: The chlorhexidine was able to induce oxidative imbalance in cells by over expression of reactive oxygen species and/or inhibiting the antioxidant enzymes. In addition to enhancing the antiradical activity in response to oxidative stress, the present drug was able to reduce the activity of two antioxidant enzymes, superoxide dismutase (SOD) and reduced flavin adenine dinucleotide-fumarate reductase (NADH-FRD), to 30% and 40%, respectively. CONCLUSIONS: We could observe an increase of the antiradical capacity of cell's lysate supernatant, to cope with the overproduction of ROS. The imbalance state The inhibition of both SOD and NADH-FRD activities could have a major role in cell oxidative imbalance.


Assuntos
Acanthamoeba , Clorexidina , Antioxidantes/farmacologia , Clorexidina/farmacologia , NAD/farmacologia , Estresse Oxidativo , Superóxido Dismutase/farmacologia
10.
Antibiotics (Basel) ; 11(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35203882

RESUMO

Acanthamoeba is a ubiquitous opportunistic protozoan pathogen that is known to cause blinding keratitis and rare, but usually fatal, granulomatous encephalitis. The difficulty in treating infections and the toxicity issues of the current treatments emphasize the need to use alternative agents with amoebicidal activity. The aim of this study was to evaluate the in vitro antiamoebic activity of three third-generation statins-cerivastatin, pitavastatin and rosuvastatin-against both cysts and trophozoites of the following four strains of Acanthamoeba: A. castellanii Neff, A. polyphaga, A. griffini and A. quina. Furthermore, programmed cell death (PCD) induction traits were evaluated by measuring chromatin condensation, damages at the mitochondrial level, production of reactive oxygen species (ROS) and the distribution of actin cytoskeleton fibers. Acanthamoeba castellanii Neff was the strain most sensitive to all the statins, where cerivastatin showed the lowest amoebicidal activity for both trophozoite and cyst forms (0.114 ± 0.050 and 0.704 ± 0.129 µM, respectively). All the statins were able to cause DNA condensation, collapse in the mitochondrial membrane potential and a reduction in ATP level production, and disorganization of the total actin fibers in the cytoskeleton of all the evaluated Acanthamoeba strains. Our results showed that the tested statins were able to induce PCD compatible events in the treated amoebae, including chromatin condensation, collapse in the mitochondrial potential and ATP levels, cytoskeleton disassembly and ROS generation.

11.
Mem. Inst. Oswaldo Cruz ; 117: e210373, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1386340

RESUMO

Free-living amoeba (FLA) group includes the potentially pathogenic genera Acanthamoeba, Naegleria, Balamuthia, Sappinia, and Vermamoeba, causative agents of human infections (encephalitis, keratitis, and disseminated diseases). In Brazil, the first report on pathogenic FLA was published in the 70s and showed meningoencephalitis caused by Naegleria spp. FLA studies are emerging, but no literature review is available to investigate this trend in Brazil critically. Thus, the present work aims to integrate and discuss these data. Scopus, PubMed, and Web of Science were searched, retrieving studies from 1974 to 2020. The screening process resulted in 178 papers, which were clustered into core and auxiliary classes and sorted into five categories: wet-bench studies, dry-bench studies, clinical reports, environmental identifications, and literature reviews. The papers dating from the last ten years account for 75% (134/178) of the total publications, indicating the FLA topic has gained Brazilian interest. Moreover, 81% (144/178) address Acanthamoeba-related matter, revealing this genus as the most prevalent in all categories. Brazil's Southeast, South, and Midwest geographic regions accounted for 96% (171/178) of the publications studied in the present work. To the best of our knowledge, this review is the pioneer in summarising the FLA research history in Brazil.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34411895

RESUMO

Free-living amoebae of Acanthamoeba spp. are causative agents of human infections such as granulomatous amoebic encephalitis (GAE) and Acanthamoeba keratitis (AK). The exploration of innovative chemical entities from natural sources that induce intrinsic apoptotic pathway or a Programmed Cell Death (PCD) in Acanthamoeba protozoa is essential to develop new therapeutic strategies. In this work, the antiamoeboid activity of squamins C-F (1-4), four cyclooctapeptides isolated from Annona globiflora was tested in vitro against Acanthamoeba castellanii Neff, A. polyphaga, A. quina, and A. griffini, and a structure-activity relationship was also established. The most sensitive strain against all tested cyclooctapeptides was A. castellanii Neff being the R conformers of the S-oxo-methionine residue, squamins D (2) and F (4), the most active against the trophozoite stage. It is remarkable that all four peptides showed no cytotoxic effects against murine macrophages cell line J774A.1. The analysis of the mode of action of squamins C-F against A. castellanii indicate that these cyclopeptides induced the mechanisms of programmed cell death (PCD). All peptides trigger mitochondrial damages, significant inhibition of ATP production compared to the negative control, chromatin condensation and slight damages in membrane that affects its permeability despite it conserves integrity at the IC90 for 24 h. An increase in reactive oxygen species (ROS) was observed in all cases.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebíase , Annona , Animais , Humanos , Camundongos , Trofozoítos
13.
Parasitol Res ; 120(8): 3001-3005, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34251514

RESUMO

Efficacious treatments against Acanthamoeba Keratitis (AK) is challenging, often ineffective and linked to the intragenotype variation in the drug efficacy. Increased oxygen can facilitate host response and can inhibit some organisms. Herein, we report the effect of increased oxygen concentrations on Acanthamoeba spp. growth and its effect on ROS (reactive oxygen species) production. The exposition to pure oxygen could reduce cell growth by at least 60% for Acanthamoeba castellanii Neff, Acanthamoeba polyphaga, and Acanthamoeba griffini. The increase in ROS production confirming that oxygen cell's growth inhibition was due to oxidative stress. Further studies are needed to determine oxygen saturation level, time of oxygen exposition, and number of sessions needed to eliminate the parasite.


Assuntos
Acanthamoeba castellanii , Estresse Oxidativo , Oxigênio , Acanthamoeba castellanii/crescimento & desenvolvimento , Oxigênio/farmacologia , Espécies Reativas de Oxigênio
14.
Int J Parasitol Drugs Drug Resist ; 15: 144-151, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33684885

RESUMO

The validation of anti-Acanthamoeba activity of commercial eye drops has gained a great interest recently and a growing number of commercials eye drop were evaluated for their aptitude to inhibit Acanthamoeba as a second pharmacological effect. In the present study, three different eye drops, commercializing in Spain, including TobraDex, Cusimolol and Colircusi antiedema have been tested in vitro against trophozoites and cysts stage of the facultative pathogen Acanthamoeba. The alamarBlue™ method was used to evaluate both trophocidal and cysticidal properties. The most active eye drops were tested for their impact on some programmed cell death features. We found out that the cells inhibition was strain and eye drop dependent, and 5% eye drop was able to eliminate both trophozoite and cyst stage of Acanthamoeba spp. A treatment of 24 h with 5% of TobraDex or Cusimolol was able to show DNA condensation, collapse in the mitochondrial membrane potential and reduction of the ATP level production in Acanthamoeba. We could assume that the present eye drops could induce programed cell death like process in Acanthamoeba via mitochondrial pathway.


Assuntos
Acanthamoeba , Amebicidas , Soluções Oftálmicas , Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Soluções Oftálmicas/farmacologia , Soluções Oftálmicas/uso terapêutico , Trofozoítos
15.
Bioorg Chem ; 108: 104682, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33556696

RESUMO

Opportunistic parasitic protozoa of genus Acanthamoeba are responsible to cause severe infections in humans such as Acanthamoeba Keratitis or Amoebic Granulomatous Encephalitis. Current treatments are usually toxic and inefficient and there is a need to access new therapeutic agents. The antiamoebic effects of nephthediol (1) and fourteen germacranolide and eudesmanolide sesquiterpene lactones (2-5, 7-12) isolated from the indigenous zoanthid Palythoa aff. clavata collected at the coast of Lanzarote, Canary Islands were studied against Acanthamoeba castellanii Neff, and the clinical strains A. polyphaga and A. griffini. 4-epi-arbusculin A (11) presented the lowest IC50 value (26,47 ± 1,69 µM) against A. castellanii Neff and low cytotoxicity against murine macrophages, followed by isobadgerin (2), which also showed to be active against A. castellanii Neff cysts. The studies on the mode of action of compounds 2 and 11 revealed these sesquiterpene lactones induce mechanisms of PDC on A. castellanii Neff.


Assuntos
Acanthamoeba/efeitos dos fármacos , Antozoários/química , Antiprotozoários/farmacologia , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Relação Dose-Resposta a Droga , Lactonas/química , Lactonas/isolamento & purificação , Estrutura Molecular , Testes de Sensibilidade Parasitária , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade
16.
Artigo em Inglês | MEDLINE | ID: mdl-33229426

RESUMO

Pathogenic and opportunistic free-living amoebae such as Acanthamoeba spp. can cause keratitis (Acanthamoeba keratitis [AK]), which may ultimately lead to permanent visual impairment or blindness. Acanthamoeba can also cause rare but usually fatal granulomatous amoebic encephalitis (GAE). Current therapeutic options for AK require a lengthy treatment with nonspecific drugs that are often associated with adverse effects. Recent developments in the field led us to target cAMP pathways, specifically phosphodiesterase. Guided by computational tools, we targeted the Acanthamoeba phosphodiesterase RegA. Computational studies led to the construction and validation of a homology model followed by a virtual screening protocol guided by induced-fit docking and chemical scaffold analysis using our medicinal and biological chemistry (MBC) chemical library. Subsequently, 18 virtual screening hits were prioritized for further testing in vitro against Acanthamoeba castellanii, identifying amoebicidal hits containing piperidine and urea imidazole cores. Promising activities were confirmed in the resistant cyst form of the amoeba and in additional clinical Acanthamoeba strains, increasing their therapeutic potential. Mechanism-of-action studies revealed that these compounds produce apoptosis through reactive oxygen species (ROS)-mediated mitochondrial damage. These chemical families show promise for further optimization to produce effective antiacanthamoebal drugs.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebíase , Amebicidas , Encefalite Infecciosa , Ceratite por Acanthamoeba/tratamento farmacológico , Amebíase/tratamento farmacológico , Amebicidas/farmacologia , Humanos
17.
Antibiotics (Basel) ; 10(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374393

RESUMO

Antibiotic stewardship programs optimize the use of antimicrobials to prevent the development of resistance and improve patient outcomes. In this prospective interventional study, a multidisciplinary team led by surgeons implemented a program aimed at shortening the duration of antibiotic treatment <7 days. The impact of the intervention on antibiotic consumption adjusted to bed-days and discharges, and the isolation of multiresistant bacteria (MRB) was also studied. Furthermore, the surgeons were surveyed regarding their beliefs and feelings about the program. Out of 1409 patients, 40.7% received antibiotic therapy. Treatment continued for over 7 days in 21.5% of cases, and, as can be expected, source control was achieved in only 48.8% of these cases. The recommendations were followed in 90.2% of cases, the most frequent being to withdraw the treatment (55.6%). During the first 16 months of the intervention, a sharp decrease in the percentage of extended treatments, with R2 = 0.111 was observed. The program was very well accepted by surgeons, and achieved a decrease in both the consumption of carbapenems and in the number of MRB isolations. Multidisciplinary stewardship teams led by surgeons seem to be well received and able to better manage antibiotic prescription in surgery.

18.
Sci Rep ; 10(1): 17731, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082417

RESUMO

Primary amoebic encephalitis (PAM) is a lethal disease caused by the opportunistic pathogen, Naegleria fowleri. This amoebic species is able to live freely in warm aquatic habitats and to infect children and young adults when they perform risk activities in these water bodies such as swimming or splashing. Besides the need to increase awareness of PAM which will allow an early diagnosis, the development of fully effective therapeutic agents is needed. Current treatment options are amphotericin B and miltefosine which are not fully effective and also present toxicity issues. In this study, the in vitro activity of various sesquiterpenes isolated from the red alga Laurencia johnstonii were tested against the trophozoite stage of a strain of Naegleria fowleri. Moreover, the induced effects (apoptotic cell death) of the most active compound, laurinterol (1), was evaluated by measuring DNA condensation, damages at the mitochondrial level, cell membrane disruption and production of reactive oxygen species (ROS). The obtained results demonstrated that laurinterol was able to eliminate the amoebae at concentrations of 13.42 ± 2.57 µM and also to induced programmed cell death (PCD) in the treated amoebae. Moreover, since ATP levels were highly affected and laurinterol has been previously reported as an inhibitor of the Na+/K+-ATPase sodium-potassium ion pump, comparison with known inhibitors of ATPases were carried out. Our results points out that laurinterol was able to inhibit ENA ATPase pump at concentrations 100 times lower than furosemide.


Assuntos
Antiparasitários/farmacologia , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Naegleria fowleri/fisiologia , Proteínas de Protozoários/antagonistas & inibidores , Sesquiterpenos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Trofozoítos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Anfotericina B/uso terapêutico , Antiparasitários/metabolismo , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Laurencia/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/metabolismo , Trofozoítos/fisiologia
19.
Int J Parasitol Drugs Drug Resist ; 14: 136-143, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33099237

RESUMO

Interest in periocular (eyelid and eyelashes margins) hygiene has attracted attention recently and a growing number of commercials eye cleanser and shampoos have been marketed. In the present study, a particular eye cleanser foam, Belcils® has been tested against trophozoites and cysts on the facultative pathogen Acanthamoeba. Viability was tested by the alamarBlue™ method and the foam was tested for the induction of programmed cell death in order to explore its mode of action. We found that a 1% solution of the foam eliminated both trophozoite and cyst stage of Acanthamoeba spp. After 90 min of incubation, Belcils® induced, DNA condensation, collapse in the mitochondrial membrane potential and reduction of the ATP level production in Acanthamoeba. We conclude that the foam destroys the cells by the induction of an apoptosis-like process. The current eye cleanser could be used as part of AK therapy protocol and as prevention from AK infections for contact lens users and post-ocular trauma patients.


Assuntos
Acanthamoeba , Antiprotozoários/farmacologia , Ceratite por Acanthamoeba , Acanthamoeba castellanii , Animais , Humanos , Potencial da Membrana Mitocondrial , Trofozoítos
20.
Biomed Pharmacother ; 130: 110518, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32674017

RESUMO

Neglected tropical diseases such as leishmaniasis and American trypanosomiasis represent an increasing health problem. Current treatments are not satisfactory which remains an urgent need for novel, cheap and safe chemotherapies. In the course of our ongoing search for new potential anti-protozoal agents, this study aimed to perform a bio-guided fractionation of Inula viscosa (Asteraceae) using in vitro assays against three strains of Leishmania and Trypanosma genus. Eight known compounds were identified from the ethanolic extract of leaves, sesquiterpenoids (3 and 4) and flavonoids (5 and 6) were characterized as the main bioactive constituents. Sesquiterpene lactones 3 and 4 (IC50 values between 4.99 and 14.26 µM) showed promising antiparasitic activity against promastigotes of L. donovani, L. amazonensis and epimastigotes of T. cruzi. Their structures were successfully characterized by spectroscopic techniques including 1D and 2D NMR experiments. Furthermore, the main bioactive compounds 4, 5 and 6 displayed higher potency (IC50 values between 0.64 and 2.13 µM) against amastigotes of L. amazonensis than miltefosine (IC50 3.11 µM), and a low toxicity on macrophages cell line (SI > 45). The analysis of structure-activity relationship (SAR) of the anti-protozoal activity revealed that lactonization or oxidation enhanced the biological profile, suggesting that the hydrophobic moiety was presumably involved in the activity by increasing the affinity and/or cell membrane permeability. In order to get an insight into the mechanism of action of these compounds, programmed cell death (PCD) experiments were performed, and the obtained results suggest that the reported compounds induced PCD in the treated parasites. These results highlight that sesquiterpenoids and flavonoids from I. viscosa could constitute an interesting scaffold for the development of novel antikinetoplastid agents.


Assuntos
Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Inula/química , Sesquiterpenos/farmacologia , Animais , Linhagem Celular , Flavonoides/toxicidade , Leishmania/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Sesquiterpenos/toxicidade , Relação Estrutura-Atividade , Trypanosoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA