Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114326, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38848212

RESUMO

Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide insights into fetal brain microglial programs and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders.


Assuntos
Encéfalo , Feto , Microglia , Microglia/metabolismo , Microglia/patologia , Animais , Feminino , Gravidez , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Humanos , Macrófagos/metabolismo , Obesidade Materna/metabolismo , Transcriptoma/genética , Masculino , Placenta/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Obesidade/patologia , Obesidade/metabolismo
2.
J Neuroinflammation ; 21(1): 163, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918792

RESUMO

BACKGROUND: The SARS-CoV-2 virus activates maternal and placental immune responses. Such activation in the setting of other infections during pregnancy is known to impact fetal brain development. The effects of maternal immune activation on neurodevelopment are mediated at least in part by fetal brain microglia. However, microglia are inaccessible for direct analysis, and there are no validated non-invasive surrogate models to evaluate in utero microglial priming and function. We have previously demonstrated shared transcriptional programs between microglia and Hofbauer cells (HBCs, or fetal placental macrophages) in mouse models. METHODS AND RESULTS: We assessed the impact of maternal SARS-CoV-2 on HBCs isolated from 24 term placentas (N = 10 SARS-CoV-2 positive cases, 14 negative controls). Using single-cell RNA-sequencing, we demonstrated that HBC subpopulations exhibit distinct cellular programs, with specific subpopulations differentially impacted by SARS-CoV-2. Assessment of differentially expressed genes implied impaired phagocytosis, a key function of both HBCs and microglia, in some subclusters. Leveraging previously validated models of microglial synaptic pruning, we showed that HBCs isolated from placentas of SARS-CoV-2 positive pregnancies can be transdifferentiated into microglia-like cells (HBC-iMGs), with impaired synaptic pruning behavior compared to HBC models from negative controls. CONCLUSION: These findings suggest that HBCs isolated at birth can be used to create personalized cellular models of offspring microglial programming.


Assuntos
COVID-19 , Macrófagos , Microglia , Placenta , Complicações Infecciosas na Gravidez , SARS-CoV-2 , Feminino , Gravidez , Microglia/virologia , Humanos , Placenta/virologia , COVID-19/imunologia , Macrófagos/virologia , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/patologia , SARS-CoV-2/patogenicidade , Feto , Adulto , Encéfalo/virologia , Encéfalo/patologia , Camundongos , Animais
3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628806

RESUMO

Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder that can lead to heart failure and sudden cardiac death, characterized at the histological level by focal areas of myocyte disarray, hypertrophy and fibrosis, and only a few disease-targeted therapies exist. To identify the focal and spatially restricted alterations in the transcriptional pathways and reveal novel therapeutic targets, we performed a spatial transcriptomic analysis of the areas of focal myocyte disarray compared to areas of normal tissue using a commercially available platform (GeoMx, nanoString). We analyzed surgical myectomy tissue from four patients with HCM and the control interventricular septum tissue from two unused organ donor hearts that were free of cardiovascular disease. Histological sections were reviewed by an expert pathologist, and 72 focal areas with varying degrees of myocyte disarray (normal, mild, moderate, severe) were chosen for analysis. Areas of interest were interrogated with the Human Cancer Transcriptome Atlas designed to profile 1800 transcripts. Differential expression analysis revealed significant changes in gene expression between HCM and the control tissue, and functional enrichment analysis indicated that these genes were primarily involved in interferon production and mitochondrial energetics. Within the HCM tissue, differentially expressed genes between areas of normal and severe disarray were enriched for genes related to mitochondrial energetics and the extracellular matrix in severe disarray. An analysis of the gene expression of the ligand-receptor pair revealed that the HCM tissue exhibited downregulation of platelet-derived growth factor (PDGF), NOTCH, junctional adhesion molecule, and CD46 signaling while showing upregulation of fibronectin, CD99, cadherin, and amyloid precursor protein signaling. A deconvolution analysis utilizing the matched single nuclei RNA-sequencing (snRNA-seq) data to determine cell type composition in areas of interest revealed significant differences in fibroblast and vascular cell composition in areas of severe disarray when compared to normal areas in HCM samples. Cell composition in the normal areas of the control tissue was also divergent from the normal areas in HCM samples, which was consistent with the differential expression results. Overall, our data identify novel and potential disease-modifying targets for therapy in HCM.


Assuntos
Cardiomiopatia Hipertrófica , Transplante de Coração , Humanos , Transcriptoma , Doadores de Tecidos , Cardiomiopatia Hipertrófica/genética , Células Musculares
4.
Sci Immunol ; 7(78): eadd0665, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563168

RESUMO

TNF mediates a variety of biological processes including cellular proliferation, inflammatory responses, and cell death and is therefore associated with numerous pathologies including autoinflammatory diseases and septic shock. The inflammatory and cell death responses to TNF have been studied extensively downstream of TNF-R1 and are believed to rely on the formation of proinflammatory complex I and prodeath complex II, respectively. We recently identified a similar multimeric complex downstream of TLR4, termed the TRIFosome, that regulates inflammation and cell death in response to LPS or Yersinia pseudotuberculosis. We present evidence of a role for the TRIFosome downstream of TNF-R1, independent of TLR3 or TLR4 engagement. Specifically, TNF-induced cell death and inflammation in murine macrophages were driven by the TLR4 adaptor TRIF and the LPS co-receptor CD14, highlighting an important role for these proteins beyond TLR-mediated immune responses. Via immunoprecipitation and visualization of TRIF-specific puncta, we demonstrated TRIF- and CD14-dependent formation of prodeath and proinflammatory complexes in response to TNF. Extending these findings, in a murine TNF-induced sepsis model, TRIF and CD14 deficiency decreased systemic inflammation, reduced organ pathology, and improved survival. The outcome of TRIF activation was cell specific, because TNF-induced lethality was mediated by neutrophils and macrophages responding to TNF in a TRIF-dependent manner. Our findings suggest that in addition to their crucial role in TNF production, myeloid cells are central to TNF toxicity and position TRIF and CD14 as universal components of receptor-mediated immune responses.


Assuntos
Neutrófilos , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Inflamação/metabolismo , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Macrófagos , Neutrófilos/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like , Fatores de Necrose Tumoral/metabolismo
5.
Retrovirology ; 12: 55, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26123575

RESUMO

BACKGROUND: The precise immune responses mediated by HLA class I molecules such as HLA-B*27:05 and HLA-B*57:01 that protect against HIV disease progression remain unclear. We studied a CRF01_AE clade HIV infected donor-recipient transmission pair in which the recipient expressed both HLA-B*27:05 and HLA-B*57:01. RESULTS: Within 4.5 years of diagnosis, the recipient had progressed to meet criteria for antiretroviral therapy initiation. We employed ultra-deep sequencing of the full-length virus genome in both donor and recipient as an unbiased approach by which to identify specific viral mutations selected in association with progression. Using a heat map method to highlight differences in the viral sequences between donor and recipient, we demonstrated that the majority of the recipient's mutations outside of Env were within epitopes restricted by HLA-B*27:05 and HLA-B*57:01, including the well-studied Gag epitopes. The donor, who also expressed HLA alleles associated with disease protection, HLA-A*32:01/B*13:02/B*14:01, showed selection of mutations in parallel with disease progression within epitopes restricted by these protective alleles. CONCLUSIONS: These studies of full-length viral sequences in a transmission pair, both of whom expressed protective HLA alleles but nevertheless failed to control viremia, are consistent with previous reports pointing to the critical role of Gag-specific CD8+ T cell responses restricted by protective HLA molecules in maintaining immune control of HIV infection. The transmission of subtype CRF01_AE clade infection may have contributed to accelerated disease progression in this pair as a result of clade-specific sequence differences in immunodominant epitopes.


Assuntos
Progressão da Doença , Infecções por HIV/imunologia , Infecções por HIV/patologia , Antígenos HLA-B/metabolismo , Antígeno HLA-B27/metabolismo , Adulto , Epitopos/genética , Epitopos/imunologia , Características da Família , Feminino , Expressão Gênica , HIV/classificação , HIV/genética , Infecções por HIV/transmissão , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Análise de Sequência de DNA , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA