Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(1)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275605

RESUMO

CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple levels. Their involvement in physiological processes, as well as their altered regulation in different human diseases, both tumoral and non-tumoral, is well documented. However, little is known about their involvement in female reproduction. This study aims to identify circRNAs potentially involved in reproductive women's health. Candidate circRNAs expressed in ovary and sponging miRNAs, already known to be expressed in the ovary, were selected by a computational approach. Using real time PCR, we verified their expression and identified circPUM1 as the most interesting candidate circRNA for further analyses. We assessed the expression of circPUM1 and its linear counterpart in all the follicle compartments and, using a computational and experimental approach, identified circPUM1 direct and indirect targets, miRNAs and mRNAs, respectively, in cumulus cells. We found that both circPUM1 and its mRNA host gene are co-expressed in all the follicle compartments and proposed circPUM1 as a potential regulator of PTEN, finding a strong positive correlation between circPUM1 and PTEN mRNA. These results suggest a possible regulation of PTEN by circPUM1 in cumulus cells and point out the important role of circRNA inside the pathways related to follicle growth and oocyte maturation.


Assuntos
MicroRNAs , RNA Circular , Feminino , Humanos , Células do Cúmulo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/metabolismo
2.
ACS Appl Nano Mater ; 6(20): 19126-19135, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37915835

RESUMO

Lanthanide-doped nanoparticles, featuring sharp emission peaks with narrow bandwidth, exhibit high downconversion luminescence intensity, making them highly valuable in the fields of bioimaging and drug delivery. High-crystallinity Y2O3 nanoparticles (NPs) doped with Er3+ ions were functionalized by using a pegylation procedure to confer water solubility and biocompatibility. The NPs were thoroughly characterized using transmission electron microscopy (TEM), inductively coupled plasma mass spectrometry (ICP-MS), and photoluminescence measurements. The pegylated nanoparticles were studied both from a toxicological perspective and to demonstrate their internalization within HCT-116 cancer cells. Cell viability tests allowed for the identification of the "optimal" concentration, which yields a detectable fluorescence signal without being toxic to the cells. The internalization process was investigated using a combined approach involving confocal microscopy and ICP-MS. The obtained data clearly indicate the efficient internalization of NPs into the cells with emission intensity showing a strong correlation with the concentrations of nanoparticles delivered to the cells. Overall, this research contributes significantly to the fields of nanotechnology and biomedical research, with noteworthy implications for imaging and drug delivery applications.

3.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430152

RESUMO

The involvement of non-coding RNAs (ncRNAs) in glioblastoma multiforme (GBM) pathogenesis and progression has been ascertained but their cross-talk within GBM cells remains elusive. We previously demonstrated the role of circSMARCA5 as a tumor suppressor (TS) in GBM. In this paper, we explore the involvement of circSMARCA5 in the control of microRNA (miRNA) expression in GBM. By using TaqMan® low-density arrays, the expression of 748 miRNAs was assayed in U87MG overexpressing circSMARCA5. Differentially expressed (DE) miRNAs were validated through single TaqMan® assays in: (i) U87MG overexpressing circSMARCA5; (ii) four additional GBM cell lines (A172; CAS-1; SNB-19; U251MG); (iii) thirty-eight GBM biopsies; (iv) twenty biopsies of unaffected brain parenchyma (UC). Validated targets of DE miRNAs were selected from the databases TarBase and miRTarbase, and the literature; their expression was inferred from the GBM TCGA dataset. Expression was assayed in U87MG overexpressing circSMARCA5, GBM cell lines, and biopsies through real-time PCR. TS miRNAs 126-3p and 515-5p were upregulated following circSMARCA5 overexpression in U87MG and their expression was positively correlated with that of circSMARCA5 (r-values = 0.49 and 0.50, p-values = 9 × 10-5 and 7 × 10-5, respectively) in GBM biopsies. Among targets, IGFBP2 (target of miR-126-3p) and NRAS (target of miR-515-5p) mRNAs were positively correlated (r-value = 0.46, p-value = 0.00027), while their expression was negatively correlated with that of circSMARCA5 (r-values = -0.58 and -0.30, p-values = 0 and 0.019, respectively), miR-126-3p (r-value = -0.36, p-value = 0.0066), and miR-515-5p (r-value = -0.34, p-value = 0.010), respectively. Our data identified a new GBM subnetwork controlled by circSMARCA5, which regulates downstream miRNAs 126-3p and 515-5p, and their mRNA targets IGFBP2 and NRAS.


Assuntos
Glioblastoma , MicroRNAs , Humanos , Glioblastoma/metabolismo , RNA Mensageiro/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , GTP Fosfo-Hidrolases/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Proto-Oncogenes , Proteínas de Membrana/metabolismo
4.
Int J Nanomedicine ; 16: 5153-5165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34611399

RESUMO

INTRODUCTION: Small extracellular vesicles (sEVs), thanks to their cargo, are involved in cellular communication and play important roles in cell proliferation, growth, differentiation, apoptosis, stemness and embryo development. Their contribution to human pathology has been widely demonstrated and they are emerging as strategic biomarkers of cancer, neurodegenerative and cardiovascular diseases, and as potential targets for therapeutic intervention. However, the use of sEVs for medical applications is still limited due to the selectivity and sensitivity limits of the commonly applied approaches. METHODS: Novel sensing solutions based on nanomaterials are arising as strategic tools able to surpass traditional sensor limits. Among these, Si nanowires (Si NWs), realized with cost-effective industrially compatible metal-assisted chemical etching, are perfect candidates for sEV detection. RESULTS: In this paper, the realization of a selective sensor able to isolate, concentrate and quantify specific vesicle populations, from minimal volumes of biofluid, is presented. In particular, this Si NW platform has a detection limit of about 2×105 sEVs/mL and was tested with follicular fluid and blastocoel samples. Moreover, the possibility to detach the selectively isolated sEVs allowing further analyses with other approaches was demonstrated by SEM analysis and several PCRs performed on the RNA content of the detached sEVs. DISCUSSION: This platform overcomes the limit of detection of traditional methods and, most importantly, preserves the biological content of sEVs, opening the route toward a reliable liquid biopsy analysis.


Assuntos
Vesículas Extracelulares , Nanofios , Biomarcadores , Proliferação de Células , Humanos , Silício
5.
Reprod Biomed Online ; 43(6): 1045-1056, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34627683

RESUMO

RESEARCH QUESTION: Treatments for Hodgkin lymphoma have improved but one of their common effects is gonadal toxicity, which contributes to fertility damage of patients and induces temporary or irreversible loss of fertility. Could micro-RNA (miRNA) expression profiles in follicular fluid be influenced by Hodgkin lymphoma? Could their alteration affect molecular pathways involved in follicle growth and oocyte maturation? DESIGN: miRNA expression profile was investigated in follicular fluid samples from young women affected by Hodgkin lymphoma compared with healthy controls by NanoString technology. Bioinformatic analysis was used to verify miRNA involvement in follicle development and miRNA deregulation with Hodgkin lymphoma in a larger cohort of follicular fluid samples was confirmed by real-time quantitative polymerase chain reaction. RESULTS: Thirteen miRNAs are deregulated in Hodgkin lymphoma samples compared with controls and are involved in molecular pathways related to cancer, gametogenesis and embryogenesis. Among them, let-7b-5p, miR-423-5p, miR-503-5p, miR-574-5p and miR-1303 are implicated in biological processes related to follicle development and oocyte maturation. Let-7b-5p holds the central position in the regulatory network of miRNA-mRNA interactions, has the highest number of mRNA target genes shared with the other differentially expressed miRNAs and is significantly downregulated in Hodgkin lymphoma follicular fluid samples. CONCLUSIONS: These data led us to question the potential influence of miRNA deregulation on oocyte quality. Further studies are needed to verify the reproductive potential of young patients with Hodgkin lymphoma before starting chemotherapy protocols and an adequate protocol of fertility preservation needs to be guaranteed.


Assuntos
Líquido Folicular/metabolismo , Doença de Hodgkin/metabolismo , MicroRNAs/metabolismo , Adolescente , Adulto , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Doença de Hodgkin/genética , Humanos , MicroRNAs/genética , Folículo Ovariano/metabolismo , Adulto Jovem
6.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34198978

RESUMO

Glioblastoma multiforme (GBM) is the most frequent and deadly human brain cancer. Early diagnosis through non-invasive biomarkers may render GBM more easily treatable, improving the prognosis of this currently incurable disease. We suggest the use of serum extracellular vesicle (sEV)-derived circular RNAs (circRNAs) as highly stable minimally invasive diagnostic biomarkers for GBM diagnosis. EVs were isolated by size exclusion chromatography from sera of 23 GBM and 5 grade 3 glioma (GIII) patients, and 10 unaffected controls (UC). The expression of two candidate circRNAs (circSMARCA5 and circHIPK3) was assayed by droplet digital PCR. CircSMARCA5 and circHIPK3 were significantly less abundant in sEVs from GBM patients with respect to UC (fold-change (FC) of -2.15 and -1.92, respectively) and GIII (FC of -1.75 and -1.4, respectively). Receiver operating characteristic curve (ROC) analysis, based on the expression of sEV-derived circSMARCA5 and circHIPK3, allowed us to distinguish GBM from UC (area under the curve (AUC) 0.823 (0.667-0.979) and 0.855 (0.704 to 1.000), with a 95% confidence interval (CI), respectively). Multivariable ROC analysis, performed by combining the expression of sEV-derived circSMARCA5 and circHIPK3 with preoperative neutrophil to lymphocyte (NLR), platelet to lymphocyte (PLR) and lymphocyte to monocyte (LMR) ratios, three known diagnostic and prognostic GBM markers, allowed an improvement in the GBM diagnostic accuracy (AUC 0.901 (0.7912 to 1.000), 95% CI). Our data suggest sEV-derived circSMARCA5 and circHIPK3 as good diagnostic biomarkers for GBM, especially when associated with preoperative NLR, PLR and LMR.

7.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562358

RESUMO

Circular RNAs (circRNAs) are a large class of RNAs with regulatory functions within cells. We recently showed that circSMARCA5 is a tumor suppressor in glioblastoma multiforme (GBM) and acts as a decoy for Serine and Arginine Rich Splicing Factor 1 (SRSF1) through six predicted binding sites (BSs). Here we characterized RNA motifs functionally involved in the interaction between circSMARCA5 and SRSF1. Three different circSMARCA5 molecules (Mut1, Mut2, Mut3), each mutated in two predicted SRSF1 BSs at once, were obtained through PCR-based replacement of wild-type (WT) BS sequences and cloned in three independent pcDNA3 vectors. Mut1 significantly decreased its capability to interact with SRSF1 as compared to WT, based on the RNA immunoprecipitation assay. In silico analysis through the "Find Individual Motif Occurrences" (FIMO) algorithm showed GAUGAA as an experimentally validated SRSF1 binding motif significantly overrepresented within both predicted SRSF1 BSs mutated in Mut1 (q-value = 0.0011). U87MG and CAS-1, transfected with Mut1, significantly increased their migration with respect to controls transfected with WT, as revealed by the cell exclusion zone assay. Immortalized human brain microvascular endothelial cells (IM-HBMEC) exposed to conditioned medium (CM) harvested from U87MG and CAS-1 transfected with Mut1 significantly sprouted more than those treated with CM harvested from U87MG and CAS-1 transfected with WT, as shown by the tube formation assay. qRT-PCR showed that the intracellular pro- to anti-angiogenic Vascular Endothelial Growth Factor A (VEGFA) mRNA isoform ratio and the amount of total VEGFA mRNA secreted in CM significantly increased in Mut1-transfected CAS-1 as compared to controls transfected with WT. Our data suggest that GAUGAA is the RNA motif responsible for the interaction between circSMARCA5 and SRSF1 as well as for the circSMARCA5-mediated control of GBM cell migration and angiogenic potential.


Assuntos
Adenosina Trifosfatases/genética , Movimento Celular , Proteínas Cromossômicas não Histona/genética , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Neovascularização Patológica/patologia , RNA Circular/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Motivos de Nucleotídeos , Prognóstico , RNA Circular/genética , Fatores de Processamento de Serina-Arginina/genética , Células Tumorais Cultivadas
8.
Front Oncol ; 10: 614455, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552987

RESUMO

Long non-coding RNAs (lncRNAs) are the most heterogeneous class of non-protein-coding RNAs involved in a broad spectrum of molecular mechanisms controlling genome function, including the generation of complex networks of RNA-RNA competitive interactions. Accordingly, their dysregulation contributes to the onset of many tumors, including colorectal cancer (CRC). Through a combination of in silico approaches (statistical screening of expression datasets) and in vitro analyses (enforced expression, artificial inhibition, or activation of pathways), we identified LINC00483 as a potential tumor suppressor lncRNA in CRC. LINC00483 was downregulated in CRC biopsies and metastases and its decreased levels were associated with severe clinical features. Inhibition of the MAPK pathway and cell cycle arrest by starvation induced an upregulation of LINC00483, while the epithelial to mesenchymal transition activation by TGFß-1 and IL-6 caused its down-modulation. Moreover, enforced expression of LINC00483 provoked a slowing down of cell migration rate without affecting cell proliferation. Since LINC00483 was predominantly cytoplasmic, we hypothesized a "miRNA sponge" role for it. Accordingly, we computationally reconstructed the LINC00483/miRNA/mRNA axes and evaluated the expression of mRNAs in different experimental conditions inducing LINC00483 alteration. By this approach, we identified a set of mRNAs sharing the miRNA response elements with LINC00483 and modulated in accordance with it. Moreover, we found that LINC00483 is potentially under negative control of transcription factor HNF4α. In conclusion, we propose that LINC00483 is a tumor suppressor in CRC that, through an RNA-RNA network, may control cell migration and participate in proliferation signaling.

9.
Int J Mol Sci ; 20(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052401

RESUMO

Reproduction, the ability to generate offspring, represents one of the most important biological processes, being essential for the conservation of the species. In mammals, it involves different cell types, tissues and organs, which, by several signaling molecules, coordinate the different events such as gametogenesis, fertilization and embryo development. In the last few years, the role of Extracellular Vesicles, as mediators of cell communication, has been investigated in every phase of these complex processes. Microvesicles and exosomes, identified in the fluid of ovarian follicles during egg maturation, are involved in communication between the developing oocyte and the somatic follicular cells. More recently, it has been demonstrated that, during implantation, Extracellular Vesicles could participate in the complex dialog between the embryo and maternal tissues. In this review, we will focus our attention on extracellular vesicles and their cargo in human female reproduction, mainly underlining the involvement of microRNAs in intercellular communication during the several phases of the reproductive process.


Assuntos
Implantação do Embrião , Vesículas Extracelulares/metabolismo , Oogênese , Blastocisto/metabolismo , Blastocisto/fisiologia , Endométrio/metabolismo , Endométrio/fisiologia , Vesículas Extracelulares/genética , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
10.
Int J Mol Sci ; 19(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037059

RESUMO

The Human Genome Project led to the discovery that about 80% of our DNA is transcribed in RNA molecules. Only 2% of the human genome is translated into proteins, the rest mostly produces molecules called non-coding RNAs, which are a heterogeneous class of RNAs involved in different steps of gene regulation. They have been classified, according to their length, into small non-coding RNAs and long non-coding RNAs, or to their function, into housekeeping non-coding RNAs and regulatory non-coding RNAs. Their involvement has been widely demonstrated in all cellular processes, as well as their dysregulation in human pathologies. In this review, we discuss the function of non-coding RNAs in endometrial physiology, analysing their involvement in embryo implantation. Moreover, we explore their role in endometrial pathologies such as endometrial cancer, endometriosis and chronic endometritis.


Assuntos
Endométrio/metabolismo , Endométrio/fisiopatologia , RNA Longo não Codificante/genética , Animais , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/fisiopatologia , Endometriose/metabolismo , Endometriose/fisiopatologia , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/fisiologia , RNA Longo não Codificante/fisiologia
11.
Am J Reprod Immunol ; 80(3): e12858, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663566

RESUMO

PROBLEM: Chronic endometritis (CE) is usually asymptomatic and different studies demonstrated the relation with infertility and recurrent pregnancy loss. Altered regulation of protein-encoding genes in CE has been demonstrated, but no evidence about the involvement of microRNAs in the pathology is present in literature. METHOD OF STUDY: In the endometrium from 15 women with CE and 15 healthy women, by RT-qPCR single assays, we investigated some microRNAs targeting IL11, CCL4, IGF1, and IGFBP1, which mRNAs had been found differentially expressed in endometrium of women affected by CE. The expression of IGF1 and IL11, targets of the deregulated microRNAs, has been analyzed in the same endometrium samples. We assessed the expression profiles of the deregulated microRNAs in the serum of the same patients validating their ability as biomarkers by statistical analysis. RESULTS: We demonstrated the upregulation of miR-27a-3p and miR-124-3p in the endometrium and serum from women with CE and found an anticorrelation relationship between miR-27a-3p and IGF1 in endometrium. ROC curve analysis suggested that miRNA investigation in endometrium and serum could discriminate women with CE. CONCLUSION: MiR-27a-3p and miR-124-3p could represent non-invasive markers of CE and, in a near future, could be used to assess the endometrial quality in IVF.


Assuntos
Aborto Espontâneo/genética , Endometrite/genética , Endométrio/fisiologia , Marcadores Genéticos/genética , Infertilidade/genética , MicroRNAs/genética , Adulto , Doença Crônica , Feminino , Humanos , Fator de Crescimento Insulin-Like I/genética , Patologia Molecular , Gravidez , Regulação para Cima
12.
Int J Genomics ; 2017: 4723193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29147648

RESUMO

Over the past few years, noncoding RNAs (ncRNAs) have been extensively studied because of the significant biological roles that they play in regulation of cellular mechanisms. ncRNAs are associated to higher eukaryotes complexity; accordingly, their dysfunction results in pathological phenotypes, including cancer. To date, most research efforts have been mainly focused on how ncRNAs could modulate the expression of protein-coding genes in pathological phenotypes. However, recent evidence has shown the existence of an unexpected interplay among ncRNAs that strongly influences cancer development and progression. ncRNAs can interact with and regulate each other through various molecular mechanisms generating a complex network including different species of RNAs (e.g., mRNAs, miRNAs, lncRNAs, and circRNAs). Such a hidden network of RNA-RNA competitive interactions pervades and modulates the physiological functioning of canonical protein-coding pathways involved in proliferation, differentiation, and metastasis in cancer. Moreover, the pivotal role of ncRNAs as keystones of network structural integrity makes them very attractive and promising targets for innovative RNA-based therapeutics. In this review we will discuss: (1) the current knowledge on complex crosstalk among ncRNAs, with a special focus on cancer; and (2) the main issues and criticisms concerning ncRNAs targeting in therapeutics.

13.
Front Mol Biosci ; 4: 66, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046875

RESUMO

Over the past few years, exosomes and their RNA cargo have been extensively studied because of the fascinating biological roles they play in cell-to-cell communication, including the signal exchange among cancer, stromal, and immune cells, leading to modifications of tumor microenvironment. RNAs, especially miRNAs, stored within exosomes, seem to be among the main determinants of such signaling: their sorting into exosomes appears to be cell-specific and related to cellular physiopathology. Accordingly, the identification of exosomal miRNAs in body fluids from pathological patients has become one of the most promising activity in the field of biomarker discovery. Several analyses on the qualitative and quantitative distribution of RNAs between cells and their secreted exosomes have given rise to questions on whether and how accurately exosomal RNAs would represent the transcriptomic snapshot of the physiological and pathological status of secreting cells. Although the exact molecular mechanisms of sorting remain quite elusive, many papers have reported an evident asymmetric quantitative distribution of RNAs between source cells and their exosomes. This phenomenon could depend both on passive and active sorting mechanisms related to: (a) RNA turnover; (b) maintaining the cytoplasmic miRNA:target equilibrium; (c) removal of RNAs not critical or even detrimental for normal or diseased cells. These observations represent very critical issues in the exploitation of exosomal miRNAs as cancer biomarkers. In this review, we will discuss how much the exosomal and corresponding donor cell transcriptomes match each other, to better understand the actual reliability of exosomal RNA molecules as pathological biomarkers reflecting a diseased status of the cells.

14.
Oncotarget ; 7(4): 4746-59, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26683098

RESUMO

MiR-671-5p is encoded by a gene localized at 7q36.1, a region amplified in human glioblastoma multiforme (GBM), the most malignant brain cancer. To investigate whether expression of miR-671-5p were altered in GBM, we analyzed biopsies from a cohort of forty-five GBM patients and from five GBM cell lines. Our data show significant overexpression of miR-671-5p in both biopsies and cell lines. By exploiting specific miRNA mimics and inhibitors, we demonstrated that miR-671-5p overexpression significantly increases migration and to a less extent proliferation rates of GBM cells. Through a combined in silico and in vitro approach, we identified CDR1-AS, CDR1, VSNL1 as downstream miR-671-5p targets in GBM. Expression of these genes significantly decreased both in GBM biopsies and cell lines and negatively correlated with that of miR-671-5p. Based on our data, we propose that the axis miR-671-5p / CDR1-AS / CDR1 / VSNL1 is functionally altered in GBM cells and is involved in the modification of their biopathological profile.


Assuntos
Autoantígenos/metabolismo , Neoplasias Encefálicas/genética , Encéfalo/metabolismo , Glioblastoma/genética , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Neurocalcina/metabolismo , Apoptose , Autoantígenos/genética , Biomarcadores Tumorais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Proliferação de Células , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Estadiamento de Neoplasias , Proteínas do Tecido Nervoso/genética , Neurocalcina/genética , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Cicatrização
15.
World J Gastroenterol ; 21(41): 11709-39, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26556998

RESUMO

For two decades Vogelstein's model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , RNA Neoplásico/genética , RNA não Traduzido/genética , Animais , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Genoma Humano , Humanos , Técnicas de Diagnóstico Molecular , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco
16.
Fertil Steril ; 102(6): 1751-61.e1, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25241362

RESUMO

OBJECTIVE: To characterize well-represented microRNAs in human follicular fluid (FF) and to ascertain whether they are cargo of FF exosomes and whether they are involved in the regulation of follicle maturation. DESIGN: FF exosomes were characterized by nanosight, flow cytometry, and exosome-specific surface markers. Expression microRNA profiles from total and exosomal FF were compared with those from plasma of the same women. SETTING: University laboratory and an IVF center. PATIENT(S): Fifteen healthy women who had undergone intracytoplasmic sperm injection. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): TaqMan low-density array to investigate the expression profile of 384 microRNAs; DataAssist and geNorm for endogenous control identification; significance analysis of microarrays to identify differentially expressed microRNAs; nanosight, flow-cytometry, and bioanalyzer for exosome characterization; bioinformatic tools for microRNAs target prediction, gene ontology, and pathway analysis. RESULT(S): We identified 37 microRNAs upregulated in FF as compared with plasma from the same women. Thirty-two were carried by microvesicles that showed the well-characterized exosomal markers CD63 and CD81. These FF microRNAs are involved in critically important pathways for follicle growth and oocyte maturation. Specifically, nine of them target and negatively regulate mRNAs expressed in the follicular microenvironment encoding inhibitors of follicle maturation and meiosis resumption. CONCLUSION(S): This study identified a series of exosomal microRNAs that are highly represented in human FF and are involved in follicular maturation. They could represent noninvasive biomarkers of oocyte quality in assisted reproductive technology.


Assuntos
Exossomos/fisiologia , Líquido Folicular/metabolismo , MicroRNAs/metabolismo , Folículo Ovariano/fisiologia , Adulto , Biologia Computacional , Feminino , Ontologia Genética , Humanos , MicroRNAs/sangue , Folículo Ovariano/metabolismo , Injeções de Esperma Intracitoplásmicas , Tetraspanina 28/metabolismo , Tetraspanina 30/metabolismo , Regulação para Cima
17.
Recent Pat Drug Deliv Formul ; 7(1): 29-38, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22974170

RESUMO

Tissue engineering (by culturing cells on appropriate scaffolds, and using bioreactors to drive the correct bone structure formation) is an attractive alternative to bone grafting or implantation of bone substitutes. Osteogenesis is a biological process that involves many molecular intracellular pathways organized to optimize bone modeling. The use of bioreactor systems and especially the perfusion bioreactor, provides both the technological means to reveal fundamental mechanisms of cell function in a 3D environment, and the potential to improve the quality of engineered tissues. In this mini-review all the characteristics for the production of an appropriate bone construct are analyzed: the stem cell source, scaffolds useful for the seeding of pre-osteoblastic cells and the effects of fluid flow on differentiation and proliferation of bone precursor cells. By automating and standardizing tissue manufacture in controlled closed systems, engineered tissues may reduce the gap between the process of bone formation in vitro and subsequent graft of bone substitutes in vivo.


Assuntos
Reatores Biológicos , Células-Tronco Mesenquimais/citologia , Osteogênese , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA