Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1350318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501109

RESUMO

Introduction: Despite evidence from preclinical studies suggesting estrogen's neuroprotective effects, the use of menopausal hormone therapy (MHT) to support cognitive function remains controversial. Methods: We used random-effect meta-analysis and multi-level meta-regression to derive pooled standardized mean difference (SMD) and 95% confidence intervals (C.I.) from 34 randomized controlled trials, including 14,914 treated and 12,679 placebo participants. Results: Associations between MHT and cognitive function in some domains and tests of interest varied by formulation and treatment timing. While MHT had no overall effects on cognitive domain scores, treatment for surgical menopause, mostly estrogen-only therapy, improved global cognition (SMD=1.575, 95% CI 0.228, 2.921; P=0.043) compared to placebo. When initiated specifically in midlife or close to menopause onset, estrogen therapy was associated with improved verbal memory (SMD=0.394, 95% CI 0.014, 0.774; P=0.046), while late-life initiation had no effects. Overall, estrogen-progestogen therapy for spontaneous menopause was associated with a decline in Mini Mental State Exam (MMSE) scores as compared to placebo, with most studies administering treatment in a late-life population (SMD=-1.853, 95% CI -2.974, -0.733; P = 0.030). In analysis of timing of initiation, estrogen-progestogen therapy had no significant effects in midlife but was associated with improved verbal memory in late-life (P = 0.049). Duration of treatment >1 year was associated with worsening in visual memory as compared to shorter duration. Analysis of individual cognitive tests yielded more variable results of positive and negative effects associated with MHT. Discussion: These findings suggest time-dependent effects of MHT on certain aspects of cognition, with variations based on formulation and timing of initiation, underscoring the need for further research with larger samples and more homogeneous study designs.


Assuntos
Cognição , Terapia de Reposição Hormonal , Feminino , Humanos , Cognição/efeitos dos fármacos , Terapia de Reposição de Estrogênios , Estrogênios/uso terapêutico , Terapia de Reposição Hormonal/métodos , Progestinas/uso terapêutico
2.
Sci Rep ; 14(1): 5519, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448497

RESUMO

Emerging evidence implicates chronic psychological stress as a risk factor for Alzheimer's disease (AD). Herein, we examined the relationships between serum cortisol and multimodality brain AD biomarkers in 277 cognitively normal midlife individuals at risk for AD. Overall, higher cortisol was associated with lower total brain volume, lower glucose metabolism (CMRglc) in frontal cortex, and higher ß-amyloid (Aß) load in AD-vulnerable regions; and marginally associated with phosphocreatine to ATP ratios (PCr/ATP) in precuneus and parietal regions. Sex-specific modification effects were noted: in women, cortisol exhibited stronger associations with Aß load and frontal CMRglc, the latter being more pronounced postmenopause. In men, cortisol exhibited stronger associations with gray matter volume and PCr/ATP measures. Higher cortisol was associated with poorer delayed memory in men but not in women. Results were adjusted for age, Apolipoprotein E (APOE) epsilon 4 status, midlife health factors, and hormone therapy use. These results suggest sex-specific neurophysiological responses to stress, and support a role for stress reduction in AD prevention.


Assuntos
Doença de Alzheimer , Hidrocortisona , Masculino , Feminino , Humanos , Encéfalo/diagnóstico por imagem , Apolipoproteína E4 , Biomarcadores , Transtornos da Memória , Trifosfato de Adenosina
3.
Front Aging Neurosci ; 15: 1183228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273652

RESUMO

Many lines of evidence suggest that mitochondria have a central role in aging-related neurodegenerative diseases, such as Alzheimer's disease (AD). Mitochondrial dysfunction, cerebral energy dysmetabolism and oxidative damage increase with age, and are early event in AD pathophysiology and may precede amyloid beta (Aß) plaques. In vivo probes of mitochondrial function and energy metabolism are therefore crucial to characterize the bioenergetic abnormalities underlying AD risk, and their relationship to pathophysiology and cognition. A majority of the research conducted in humans have used 18F-fluoro-deoxygluose (FDG) PET to image cerebral glucose metabolism (CMRglc), but key information regarding oxidative phosphorylation (OXPHOS), the process which generates 90% of the energy for the brain, cannot be assessed with this method. Thus, there is a crucial need for imaging tools to measure mitochondrial processes and OXPHOS in vivo in the human brain. 31Phosphorus-magnetic resonance spectroscopy (31P-MRS) is a non-invasive method which allows for the measurement of OXPHOS-related high-energy phosphates (HEP), including phosphocreatine (PCr), adenosine triphosphate (ATP), and inorganic phosphate (Pi), in addition to potential of hydrogen (pH), as well as components of phospholipid metabolism, such as phosphomonoesters (PMEs) and phosphodiesters (PDEs). Herein, we provide a systematic review of the existing literature utilizing the 31P-MRS methodology during the normal aging process and in patients with mild cognitive impairment (MCI) and AD, with an additional focus on individuals at risk for AD. We discuss the strengths and limitations of the technique, in addition to considering future directions toward validating the use of 31P-MRS measures as biomarkers for the early detection of AD.

4.
EMBO Mol Med ; 13(3): e12716, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587338

RESUMO

Lack of effective immune infiltration represents a significant barrier to immunotherapy in solid tumors. Thus, solid tumor-enriched death receptor-5 (DR5) activating antibodies, which generates tumor debulking by extrinsic apoptotic cytotoxicity, remains a crucial alternate therapeutic strategy. Over past few decades, many DR5 antibodies moved to clinical trials after successfully controlling tumors in immunodeficient tumor xenografts. However, DR5 antibodies failed to significantly improve survival in phase-II trials, leading in efforts to generate second generation of DR5 agonists to supersize apoptotic cytotoxicity in tumors. Here we have discovered that clinical DR5 antibodies activate an unexpected immunosuppressive PD-L1 stabilization pathway, which potentially had contributed to their limited success in clinics. The DR5 agonist stimulated caspase-8 signaling not only activates ROCK1 but also undermines proteasome function, both of which contributes to increased PD-L1 stability on tumor cell surface. Targeting DR5-ROCK1-PD-L1 axis markedly increases immune effector T-cell function, promotes tumor regression, and improves overall survival in animal models. These insights have identified a potential clinically viable combinatorial strategy to revive solid cancer immunotherapy using death receptor agonism.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Animais , Anticorpos Monoclonais , Humanos , Evasão da Resposta Imune , Imunoterapia , Quinases Associadas a rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA