Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958986

RESUMO

Gastric cancer, particularly adenocarcinoma, is a significant global health concern. Environmental risk factors, such as Helicobacter pylori infection and diet, play a role in its development. This study aimed to characterize the chemical composition and evaluate the in vitro antibacterial and antitumor activities of an Aristolochia olivieri Colleg. ex Boiss. Leaves' methanolic extract (AOME). Additionally, morphological changes in gastric cancer cell lines were analyzed. AOME was analyzed using HPLC-MS/MS, and its antibacterial activity against H. pylori was assessed using the broth microdilution method. MIC and MBC values were determined, and positive and negative controls were included in the evaluation. Anticancer effects were assessed through in vitro experiments using AGS, KATO-III, and SNU-1 cancer cell lines. The morphological changes were examined through SEM and TEM analyses. AOME contained several compounds, including caffeic acid, rutin, and hyperoside. The extract displayed significant antimicrobial effects against H. pylori, with consistent MIC and MBC values of 3.70 ± 0.09 mg/mL. AOME reduced cell viability in all gastric cancer cells in a dose- and time-dependent manner. Morphological analyses revealed significant ultrastructural changes in all tumor cell lines, suggesting the occurrence of cellular apoptosis. This study demonstrated that AOME possesses antimicrobial activity against H. pylori and potent antineoplastic properties in gastric cancer cell lines. AOME holds promise as a natural resource for innovative nutraceutical approaches in gastric cancer management. Further research and in vivo studies are warranted to validate its potential clinical applications.


Assuntos
Aristolochia , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/prevenção & controle , Neoplasias Gástricas/metabolismo , Infecções por Helicobacter/metabolismo , Espectrometria de Massas em Tandem , Antibacterianos/química , Extratos Vegetais/química , Mucosa Gástrica/metabolismo
2.
Calcif Tissue Int ; 112(6): 666-674, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36949181

RESUMO

Over the last decade, evidence has mounted for a prominent etiologic role of femoroacetabular impingement (FAI) in the development of early hip osteoarthritis (OA). The aim of this study was to compare the ultrastructure and tissue composition of the hip labrum in healthy and pathological conditions, as FAI and OA, to provide understanding of structural changes which might be helpful in the future to design targeted therapies and improve treatment indications. We analyzed labral tissue samples from five healthy multi-organ donors (MCDs) (median age, 38 years), five FAI patients (median age, 37 years) and five late-stage OA patients undergoing total hip replacement (median age, 56 years). We evaluated morpho-functional by histology and transmission electron microscopy. Extracellular matrix (ECM) structure changes were similar in specimens from FAI compared to those from patients with OA (more severe in the latter) showing disorganization of collagen fibers and increased proteoglycan content. In FAI and in OA nuclei the chromatin was condensed, organelle degenerated and cytoplasm vacuolized. Areas of calcification were mainly observed in FAI and OA labrum, as well as apoptotic-like features. We showed that labral tissue of patients with FAI had similar pathological alterations of tissue obtained from OA patients, suggesting that FAI patients might have high susceptibility to develop OA.


Assuntos
Artroplastia de Quadril , Calcinose , Impacto Femoroacetabular , Osteoartrite do Quadril , Humanos , Adulto , Pessoa de Meia-Idade , Impacto Femoroacetabular/patologia , Impacto Femoroacetabular/cirurgia , Osteoartrite do Quadril/patologia , Artroplastia de Quadril/efeitos adversos , Calcinose/complicações , Matriz Extracelular/patologia , Articulação do Quadril/patologia , Articulação do Quadril/cirurgia
3.
Microsc Res Tech ; 85(7): 2381-2389, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35485998

RESUMO

2,2-bis(6-bromo-1H-indol-3-yl) ethanamine, a marine bisindole alkaloid, showed anticancer property in several tumor cell lines thanks to the presence of a 3,3'-diindolylmethane scaffold. Here, the modifications in its chemical structure into alkaloid-like derivatives, have been evaluated, to investigate changes in its biological activities. Three derivatives have been considered and their potential apoptotic action has been evaluated through morpho-functional analyses in a human cancer cell line. Apoptosis appears strongly decreased in the derivatives without the bromine atoms (1) and in those where the bromine atoms have been substituted with fluorine atoms (2). On the contrary, the methylation of indole NH (3) does not alter the alkaloid apoptotic activity that occurs through mitochondria involvement supported by cardiolipin peroxidation and dysfunctional mitochondria presence. This manuscript highlights the alkaloid derivative cytotoxic effect, which is strictly correlated to the presence of N-methylated bisindole alkaloid and bromine atoms, conditions which assure to maintain the pro-apoptotic activity. Since molecular therapies, by targeting mitochondria pathways, have shown positive outcomes against several cancer cells, the alkaloid with bisindole methylated scaffold and the two bromine atoms can be considered a promising candidate to develop new derivatives with strong anticancer property. RESEARCH HIGHLIGHTS: 2,2-bis(6-bromo-1H-indol-3-yl) ethanamine is an alkaloid known for its anticancer properties. Morpho-functional analyses evaluated cytotoxicity of its synthetic derivatives in tumor cells. Anticancer properties depend on the presence of bisindole scaffold and the two bromine units.


Assuntos
Alcaloides , Antineoplásicos , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose , Bromo/farmacologia , Linhagem Celular Tumoral , Humanos
4.
Pharmaceutics ; 13(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34959330

RESUMO

A redox-responsive nanocarrier is a promising strategy for the intracellular drug release because it protects the payload, prevents its undesirable leakage during extracellular transport, and favors site-specific drug delivery. In this study, we developed a novel redox responsive core-shell structure nanohydrogel prepared by a water in oil nanoemulsion method using two biocompatible synthetic polymers: vinyl sulfonated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-polyethylene glycol-poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) triblock copolymer, and thiolated hyaluronic acid. The influence on the nanohydrogel particle size and distribution of formulation parameters was investigated by a three-level full factorial design to optimize the preparation conditions. The surface and core-shell morphology of the nanohydrogel were observed by scanning electron microscope, transmission electron microscopy, and further confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy from the standpoint of chemical composition. The redox-responsive biodegradability of the nanohydrogel in reducing environments was determined using glutathione as reducing agent. A nanohydrogel with particle size around 250 nm and polydispersity index around 0.1 is characterized by a thermosensitive shell which jellifies at body temperature and crosslinks at the interface of a redox-responsive hyaluronic acid core via the Michael addition reaction. The nanohydrogel showed good encapsulation efficiency for model macromolecules of different molecular weight (93% for cytochrome C, 47% for horseradish peroxidase, and 90% for bovine serum albumin), capacity to retain the peroxidase-like enzymatic activity (around 90%) of cytochrome C and horseradish peroxidase, and specific redox-responsive release behavior. Additionally, the nanohydrogel exhibited excellent cytocompatibility and internalization efficiency into macrophages. Therefore, the developed core-shell structure nanohydrogel can be considered a promising tool for the potential intracellular delivery of different pharmaceutical applications, including for cancer therapy.

5.
Front Mol Biosci ; 8: 732900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820420

RESUMO

Breast cancer (BC) is the most commonly diagnosed malignant tumor in women worldwide, and the leading cause of cancer death in the female population. The percentage of patients experiencing poor prognosis along with the risk of developing metastasis remains high, also affecting the resistance to current main therapies. Cancer progression and metastatic development are no longer due entirely to their intrinsic characteristics, but also regulated by signals derived from cells of the tumor microenvironment. Extracellular vesicles (EVs) packed with DNA, RNA, and proteins, are the most attractive targets for both diagnostic and therapeutic applications, and represent a decisive challenge as liquid biopsy-based markers. Here we performed a study based on a multiplexed phenotyping flow cytometric approach to characterize BC-derived EVs from BC patients and cell lines, through the detection of multiple antigens. Our data reveal the expression of EVs-related biomarkers derived from BC patient plasma and cell line supernatants, suggesting that EVs could be exploited for characterizing and monitoring disease progression.

6.
Diagnostics (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800141

RESUMO

Prostate Cancer (PCa) is one of the most frequently identified urological cancers. PCa patients are often over-diagnosed due to still not highly specific diagnostic methods. The need for more accurate diagnostic tools to prevent overestimated diagnosis and unnecessary treatment of patients with non-malignant conditions is clear, and new markers and methods are strongly desirable. Extracellular vesicles (EVs) hold great promises as liquid biopsy-based markers. Despite the biological and technical issues present in their detection and study, these particles can be found highly abundantly in the biofluid and encompass a wealth of macromolecules that have been reported to be related to many physiological and pathological processes, including cancer onset, metastasis spreading, and treatment resistance. The present study aims to perform a technical feasibility study to develop a new workflow for investigating EVs from several biological sources. Serum and urinary supernatant EVs of PCa, benign prostatic hyperplasia (BPH) patients, and healthy donors were isolated and investigated by a fast, easily performable, and cost-effective cytofluorimetric approach for a multiplex detection of 37 EV-antigens. We also observed significant alterations in serum and urinary supernatant EVs potentially related to BPH and PCa, suggesting a potential clinical application of this workflow.

7.
Eur J Histochem ; 63(1)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30739432

RESUMO

The human meniscus plays a crucial role for transmission and distribution of load across the knee, as well as shock absorption, joint stability, lubrication, and congruity. The aim of this study was to compare the complex geometry, and unique ultrastructure and tissue composition of the meniscus in healthy (control) and pathological conditions to provide understanding of structural changes that could be helpful in the future design of targetted therapies and improvement of treatment indications. We analyzed meniscus samples collected from 3 healthy multi-organ donors (median age, 66 years), 5 patients with traumatic meniscal tear (median age, 41 years) and 3 patients undergoing total knee replacement (TKR) for end-stage osteoarthritis (OA) (median age, 72 years). We evaluated the extracellular matrix (ECM) organization, the appearance and distribution of areas of calcification, and modifications of cellular organization and structure by electron microscopy and histology. The ECM structure was similar in specimens from traumatic meniscus tears compared to those from patients with late-stage OA, showing disorganization of collagen fibers and increased proteoglycan content. Cells of healthy menisci showed mainly diffuse chromatin and well preserved organelles. Both in traumatic and in OA menisci, we observed increased chromatin condensation, organelle degeneration, and cytoplasmic vacuolization, a portion of which contained markers of autophagic vacuoles. Areas of calcification were also observed in both traumatic and OA menisci, as well as apoptotic-like features that were particularly prominent in traumatic meniscal tear samples. We conclude that meniscal tissue from patients with traumatic meniscal injury demonstrate pathological alterations characteristic of tissue from older patients undergoing TKR, suggesting that they have high susceptibility to develop OA.


Assuntos
Traumatismos do Joelho/patologia , Articulação do Joelho/anatomia & histologia , Menisco/citologia , Menisco/patologia , Osteoartrite do Joelho/patologia , Adulto , Idoso , Calcinose/patologia , Matriz Extracelular/patologia , Matriz Extracelular/ultraestrutura , Feminino , Humanos , Articulação do Joelho/patologia , Masculino , Menisco/lesões , Menisco/ultraestrutura , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade
8.
Microsc Res Tech ; 81(11): 1295-1300, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30295364

RESUMO

Iron is one of the most important elements for human, because it plays an essential role in many metabolic processes. However, it is also recognized to be dangerous for its detrimental effect inside human cells, where, in the absence of homeostatic balance, it can induce free radicals formation. Moreover, an excessive accumulation of iron in tissues can produce iron overload, a condition incompatible with life. The use of liposomes as carriers can represent an interesting iron therapy to improve iron bioavailability and reduce its negative effects, in particular during pregnancy. In this study, a morphological analysis has been performed on commercial liposome vesicles at various drying times, both in saline solution and in distilled water. Furthermore, to highlight their possible interaction or internalization in cells, liposomes have been administered to human hemopoietic U937 cells. Ultrastructural analyses confirm that vesicle morphology and size are comparable with classical liposomal structures. Products are stable during specimen preparation and drying. Additionally, they have a good ability to penetrate into cells, interacting with cytoplasmic organelles, without inducing, at least apparently, any ultrastructural damage.


Assuntos
Portadores de Fármacos/metabolismo , Compostos Ferrosos/metabolismo , Lipossomos/metabolismo , Anemia Ferropriva/tratamento farmacológico , Linhagem Celular Tumoral , Portadores de Fármacos/uso terapêutico , Compostos Ferrosos/uso terapêutico , Humanos , Ferro/metabolismo , Ferro/uso terapêutico , Microscopia Eletrônica de Transmissão , Células U937
9.
Colloids Surf B Biointerfaces ; 161: 147-155, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29073527

RESUMO

Human monocyte U937 cell line was used as a model to verify the toxicity of erionite and offretite asbestiform zeolite fibers. As a presumed non-toxic reference, a fibrous scolecite zeolite was also used. To analyze the process of fiber ingestion into cells and the cells-fibers interactions, a spin-probe electron paramagnetic resonance (EPR) analysis was performed supported by transmission electron microscopy (TEM) and cell viability measurements as a function of the incubation time. Erionite fibers were fast internalized in the membrane mainly as aggregates with radical-solution drops trapped inside, and were found in the cytosol and at the nucleus. In 24h, first erionite fibers rich in sodium and potassium, and then calcium-rich erionite fibers, induced cell necrosis. The offretite fibers formed rounding electron-dense filaments which transformed in curved filaments, initially perturbing the cell structure and interacting at the external surface more than erionite fibers. Such interactions probably diminished the toxic effect of offretite on cells. Interestingly, the presumed non-toxic scolecite fibers were partially internalized, inducing formation of swollen mitochondria and squared cells. Overall, the toxic effect of the fibrous zeolites was related to fiber morphology, chemical distribution of sites, structural variations and formation of aggregates.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Microscopia Eletrônica de Transmissão/métodos , Dilatação Mitocondrial/efeitos dos fármacos , Zeolitas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/ultraestrutura , Células U937 , Zeolitas/química
10.
Int J Mol Sci ; 18(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165341

RESUMO

Myogenic differentiation is triggered, among other situations, in response to muscle damage for regenerative purposes. It has been shown that during myogenic differentiation, myotubes release extracellular vesicles (EVs) which participate in the signalling pattern of the microenvironment. Here we investigated whether EVs released by myotubes exposed or not to mild oxidative stress modulate the behaviour of targeted differentiating myoblasts and macrophages to promote myogenesis. We found that EVs released by oxidatively challenged myotubes (H2O2-EVs) are characterized by an increased loading of nucleic acids, mainly DNA. In addition, incubation of myoblasts with H2O2-EVs resulted in a significant decrease of myotube diameter, myogenin mRNA levels and myosin heavy chain expression along with an upregulation of proliferating cell nuclear antigen: these effects collectively lead to an increase of recipient myoblast proliferation. Notably, the EVs from untreated myotubes induced an opposite trend in myoblasts, that is, a slight pro-differentiation effect. Finally, H2O2-EVs were capable of eliciting an increased interleukin 6 mRNA expression in RAW264.7 macrophages. Notably, this is the first demonstration that myotubes communicate with surrounding macrophages via EV release. Collectively, the data reported herein suggest that myotubes, depending on their conditions, release EVs carrying differential signals which could contribute to finely and coherently orchestrate the muscle regeneration process.


Assuntos
Vesículas Extracelulares/metabolismo , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo , Animais , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Espaço Intracelular/metabolismo , Macrófagos/metabolismo , Camundongos , Mioblastos/metabolismo
11.
Eur J Histochem ; 61(3): 2784, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29046052

RESUMO

Skin cells can respond to UVB-induced damage either by tolerating it, or restoring it through antioxidant activation and DNA repair mechanisms or, ultimately, undergoing programmed cell death, when damage is massive. Nutritional factors, in particular, food antioxidants, have attracted much interest because of their potential use in new preventive, protective, and therapeutic strategies for chronic degenerative diseases, including skin inflammation and cancer. Some polyphenols, present in virgin olive oil, well tolerated by organism after oral administration, show a variety of pharmacological and clinical benefits such as anti-oxidant, anti-cancer, anti-inflammatory, and neuro-protective activities. Here, the protective effects of antioxidant compounds against UV-induced apoptosis have been described in HaCat cell line. Human keratinocytes were pre-treated with antioxidants before UVB exposure and their effects have been evaluated by means of ultrastructural analyses. After UVB radiation, a known cell death trigger, typical apoptotic features, absent in control condition and in antioxidant alone-treated cells, appear. An evident numerical decrease of ultrastructural apoptotic patterns and TUNEL positive nuclei can be observed when natural antioxidants were supplied before cell death induction. These data have been confirmed by molecular investigation of caspase activity. In conclusion, this paper highlights antioxidant compound ability to prevent apoptotic cell death in human keratinocytes exposed to UVB, suggesting, for these molecules, a potential role in preventing skin damage.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Raios Ultravioleta , Apoptose/efeitos da radiação , Western Blotting , Caspase 1/metabolismo , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Humanos , Queratinócitos/enzimologia , Microscopia Eletrônica de Varredura
12.
J Toxicol Environ Health A ; 80(3): 171-187, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28277034

RESUMO

Different asbestiform zeolite fibers of the erionite (termed GF1 and MD8, demonstrated carcinogenic) and offretite (termed BV12, suspected carcinogenic) families were investigated by analyzing the electron paramagnetic resonance (EPR) spectra of selected surfactant spin probes and transmission electron microscopy (TEM) images in the presence of model membranes-cetyltrimethylammonium (CTAB) micelles, egg-lecithin liposomes, and dimyristoylphosphatidylcholine (DMPC) liposomes. This was undertaken to obtain information on interactions occurring at a molecular level between fibers and membranes which correlate with entrance of fibers into the membrane model or location of the fibers at the external or internal membrane interfaces. For CTAB micelles, all fibers were able to enter the micelles, but the hair-like structure and chemical surface characteristics of GF1 modified the micelle structure toward a bilayer-like organization, while MD8 and BV12, being shorter fibers and with a high density of surface interacting groups, partially destroyed the micelles. For liposomes, GF1 fibers partially penetrated the core solution, but DMPC liposomes showed increasing rigidity and organization of the bilayer. Conversely, for MD8 and BV12, the fibers did not cross the membrane demonstrating a smaller membrane structure perturbation. Scolecite fibers (termed SC1), used for comparison, presented poor interactions with the model membranes. The carcinogenicity of the zeolites, as postulated in the series SC1

Assuntos
Compostos de Cetrimônio/química , Dimiristoilfosfatidilcolina/química , Lipossomos/química , Micelas , Zeolitas/química , Cetrimônio , Espectroscopia de Ressonância de Spin Eletrônica , Membranas Artificiais , Microscopia Eletrônica de Transmissão
13.
J Dermatol Sci ; 80(1): 61-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26166167

RESUMO

BACKGROUND: Phenolic compounds, the biggest group of natural antioxidants, have attracted much attention due to their known and wide-ranging biological activities, as well as to their health effects. In particular, regardless their antioxidant activity, they play a key role in the control of several inflammation-associated processes as well as in improving antioxidant defense system. In an our previous work we have demonstrated the ability of Hydroxytyrosol, an ortho-diphenolic compound, essential component of oleuropein, in preventing apoptotic cell death induced by UVB radiation in HaCaT cell lines in vitro. In olive oil, besides Hydroxytyrosol, there are appreciable amounts of Tyrosol and its secoiridoid derivatives. OBJECTIVE: It has been well established that Tyrosol has a significantly lower antioxidant activity than Hydroxytyrosol, but despite this, recent studies suggest that Tyrosol exerts a powerful protective effect against oxidative injuries in cell systems and that it is able to improve the intracellular antioxidant defenses. MATERIALS AND METHODS: Here, Tyrosol effect has been evaluated in HaCaT cells exposed to UVB radiation by means of morphological and molecular analyses. RESULTS: Our study revealed the polyphenol ability in reducing apoptotic markers and in protecting HaCaT cells from damage. CONCLUSION: These findings suggest an important role of Tyrosol in protecting cells from apoptotic cell death and encourage the use of this phytochemical as biological ingredient in topical preparations as possible tool to prevent skin damage.


Assuntos
Apoptose/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Azeite de Oliva/química , Álcool Feniletílico/análogos & derivados , Protetores contra Radiação/isolamento & purificação , Linhagem Celular , Humanos , Queratinócitos/efeitos dos fármacos , Álcool Feniletílico/isolamento & purificação , Álcool Feniletílico/farmacologia
14.
Oncol Rep ; 34(1): 279-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25998836

RESUMO

Melatonin is a small indole produced by the pineal gland and other tissues, and has numerous functions that aid in the maintenance of the whole body homeostasis, ranging from the regulation of circadian rhythms and sleep to protection from oxidative stress. Melatonin has also been reported to counteract cell growth and chemoresistance in different types of cancer. In the present study, we investigated the effects of exogenous melatonin administration on different human cell lines and primary mouse tumor cultures of rhabdomyosarcoma (RMS), the most frequent soft tissue sarcoma affecting childhood. The results showed that melatonin significantly affected the behavior of RMS cells, leading to inhibition of cell proliferation and impairment of myogenic differentiation followed by increased apoptotic cell death, as observed by immunoblotting analysis of apoptosis-related markers including Bax, Bcl-2 and caspase-3. Similar findings were observed using a combination of microscopy techniques, including scanning/transmission electron and confocal microscopy. Furthermore, melatonin in combination with doxorubicin or cisplatin, two compounds commonly used for the treatment of solid tumors, increased the sensitivity of RMS cells to apoptosis. These data indicated that melatonin may be effective in counteracting RMS tumor growth and chemoresistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Melatonina/administração & dosagem , Rabdomiossarcoma/tratamento farmacológico , Animais , Caspase 3/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Doxorrubicina/administração & dosagem , Humanos , Camundongos , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia
15.
Curr Pharm Des ; 21(25): 3665-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25613787

RESUMO

Apoptosis is essential for skeletal muscle development and homeostasis. It has been frequently involved in several muscle myopathies and sarcopenia, as well as in denervation, in disuse and acute strenuous or eccentric physical exercise. In this work skeletal muscle cell death, induced in vitro by a variety of physical triggers, has been investigated. C2C12 myoblasts and myotubes were exposed to UVB for 30 min, hyperthermia for 1 h at 43 °C, low pH for 3 h, hypothermia for 4h at 0 - 6°C, all followed by 2 - 4 h recovery. Their effects have been analysed by means of morpho- functional and molecular approaches. After UVB radiation, hyperthermia and acidosis, morphological apoptotic features and in situ DNA fragmentation appeared, more evident in myoblasts. Interestingly, apoptotic, non apoptotic and necrotic nuclei could be occasionally observed within the same myotube. Low pH induced apoptosis and necrosis, both characterized by swollen nuclei. In all these experimental conditions, the molecular investigations revealed a caspase pathway involvement in inducing cell death. Differently, hypothermia showed a scant and initial chromatin margination, in the presence of a diffused autophagic component. In this case, in situ DNA fragmentation and caspase activation have not been detected. Myoblasts and myotubes appeared sensitive to physical agents, some of which, induced apoptotic cell death. Moreover, hypothermia exposure seemed to enhance autophagic response, thus representing a way to delay trauma-correlated muscle inflammation. This study permits to highlight skeletal muscle cell behavior in response to physical agents, by adding important information to muscle cell death knowledge. UVB radiation and hyperthermia, usually used in clinical therapy, have also adverse effects on skeletal muscle such as myonuclei loss and cell death, contributing to muscle mass decrease. Acidosis occurs physiologically in muscular fatigue, reducing not only the athlete performance, but causing muscle cell damage or death too. Finally, hypothermia, stimulating the autophagic response, could have a key role in muscle injury prevention.


Assuntos
Apoptose , Temperatura Baixa , Temperatura Alta , Fibras Musculares Esqueléticas/ultraestrutura , Mioblastos Esqueléticos/ultraestrutura , Raios Ultravioleta , Animais , Apoptose/efeitos da radiação , Western Blotting , Técnicas de Cultura de Células , Linhagem Celular , Fragmentação do DNA/efeitos da radiação , Eletroforese em Gel de Ágar , Concentração de Íons de Hidrogênio , Marcação In Situ das Extremidades Cortadas , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Fibras Musculares Esqueléticas/efeitos da radiação , Mioblastos Esqueléticos/efeitos da radiação
16.
J Photochem Photobiol B ; 141: 1-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25305749

RESUMO

Skin cells can respond to UVB-induced damage by counteracting it through antioxidant activation and DNA repair mechanisms or, when damage is massive by undergoing programmed cell death. Antioxidant factors, and, in particular, food compounds, have attracted much interest because of their potential use in new protective strategies for degenerative skin disorders. Melatonin, creatine and hydroxytyrosol show a variety of pharmacological and clinical benefits including anti-oxidant and anti-inflammatory activities. Here, the potential protective actions of antioxidant compounds against UVB-induced apoptosis were investigated in human keratinocytes. The cells were pre-treated with antioxidants before UVB exposure and their effect evaluated by means of ultrastructural and molecular analyses. After UVB radiation typical morphological apoptotic features and in situ DNA fragmentation after TUNEL reaction, appeared. A significant numerical decrease of apoptotic patterns could be observed when antioxidants were administrated before cell death induction. Moreover, both the intrinsic and extrinsic apoptotic pathways appeared activated after UVB radiation, and their down-regulation has been shown when antioxidants were added to cells before death induction. In conclusion, these compounds are able to prevent apoptotic cell death in human keratinocytes exposed to UVB, suggesting, for these molecules, an important role in preventing skin damage.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Raios Ultravioleta , Apoptose/efeitos da radiação , Caspases/metabolismo , Linhagem Celular , Creatina/farmacologia , Fragmentação do DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos da radiação , Humanos , Junções Intercelulares/ultraestrutura , Queratinócitos/citologia , Queratinócitos/metabolismo , Melatonina/farmacologia , Microscopia de Fluorescência , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo
17.
Int J Mol Sci ; 15(4): 6625-40, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24747596

RESUMO

Melatonin (MEL), a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by stimulating production/activity of intracellular antioxidant enzymes. In this work, some chemical triggers, with different mechanisms of action, have been chosen to induce cell death in U937 hematopoietic cell line. Cells were pre-treated with 100 µM MEL and then exposed to hydrogen peroxide or staurosporine. Morphological analyses, TUNEL reaction and Orange/PI double staining have been used to recognize ultrastructural apoptotic patterns and to evaluate DNA behavior. Chemical damage and potential MEL anti-apoptotic effects were quantified by means of Tali® Image-Based Cytometer, able to monitor cell viability and apoptotic events. After trigger exposure, chromatin condensation, micronuclei formation and DNA fragmentation have been observed, all suggesting apoptotic cell death. These events underwent a statistically significant decrease in samples pre-treated with MEL. After caspase inhibition and subsequent assessment of cell viability, we demonstrated that apoptosis occurs, at least in part, through the mitochondrial pathway and that MEL interacts at this level to rescue U937 cells from death.


Assuntos
Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Melatonina/farmacologia , Estaurosporina/toxicidade , DNA/metabolismo , Clivagem do DNA/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Células U937
18.
Nat Prod Res ; 27(17): 1583-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23030520

RESUMO

Salvia x jamensis J. Compton is a hybrid between Salvia greggii A. Gray and Salvia microphylla Kunt. In this study, we describe three hair types identified by Scanning Electron Microscopy. In the essential oil of the aerial parts of S. jamensis 56 different compounds were identified. The two main constituents were ß-caryophyllene (14.8%) and ß-pinene (6.8%). Cytotoxic-apoptotic activity of S. x jamensis essential oil has been investigated by using U937 cell line. The essential oil EC50 for cell number and for cell apoptosis have been shown to be 360 and 320 µg mL(-1), respectively. Among the constituents of the oil examined, only ß-caryophyllene, ß-pinene and α-pinene displayed cytotoxic and apoptotic activities. For the first time, it has been demonstrated that some of the pure constituents identified within S. x jamensis essential oil are responsible for its cytotoxic-apoptotic activity when properly combined.


Assuntos
Óleos Voláteis/química , Salvia/química , Tricomas/química , Apoptose/efeitos dos fármacos , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Varredura , Monoterpenos/química , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Sesquiterpenos/farmacologia
19.
Int J Mol Sci ; 14(1): 532-46, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23271369

RESUMO

Ultraviolet B (UVB) radiation acts as a strong apoptotic trigger in many cell types, in tumor and normal cells. Several studies have demonstrated that UVB-induced cell death occurs through the generation of reactive oxygen species. The consequent oxidative stress includes the impairment of cellular antioxidants, the induction of DNA damage and the occurrence of apoptosis. In this review, we investigated UVB apoptotic action in various cell models by using ultrastructural, molecular and cytofluorimetric techniques. Myeloid leukemia HL-60, T-lymphoblastoid Molt-4 and myelomonocytic U937 human cells, generally affected by apoptotic stimuli, were studied. Human chondrocytes and C2C12 skeletal muscle cells, known to be more resistant to damage, were also considered. All of them, when exposed to UVB radiation, revealed a number of characteristic apoptotic markers. Membrane blebbing, cytoplasm shrinkage and chromatin condensation were detected by means of electron microscopy. DNA cleavage, investigated by using agarose gel electrophoresis and TUNEL reaction, was observed in suspended cells. Differently, in chondrocytes and in skeletal muscle cells, oligonucleosomic DNA fragmentation did not appear, even if a certain TUNEL positivity was detected. These findings demonstrate that UVB radiation appears to be an ideal tool to study the apoptotic behavior.


Assuntos
Apoptose/efeitos da radiação , Linhagem da Célula/efeitos da radiação , Raios Ultravioleta , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Linhagem Celular Tumoral , Condrócitos/citologia , Condrócitos/efeitos da radiação , Condrócitos/ultraestrutura , Clivagem do DNA/efeitos da radiação , Humanos , Camundongos , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos da radiação , Fibras Musculares Esqueléticas/ultraestrutura , Mioblastos/citologia , Mioblastos/efeitos da radiação , Mioblastos/ultraestrutura
20.
J Cell Physiol ; 226(3): 822-31, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20857426

RESUMO

Over the past 20 years, survival rates of T-cell acute lymphoblastic leukemia (T-ALL) patients have improved, mainly because of advances in polychemotherapy protocols. Despite these improvements, we still need novel and less toxic treatment strategies targeting aberrantly activated signaling networks which increase proliferation, survival, and drug resistance of T-ALL cells. One such network is represented by the phosphatidylinositol 3-kinase (PI3K)/Akt axis. PI3K inhibitors have displayed some promising effects in preclinical models of T-ALL. Here, we have analyzed the therapeutic potential of the Akt inhibitor, triciribine, in T-ALL cell lines. Triciribine caused cell cycle arrest and caspase-dependent apoptosis. Western blots demonstrated a dose-dependent dephosphorylation of Akt1/Akt2, and of mammalian target of rapamycin complex 1 downstream targets in response to triciribine. Triciribine induced autophagy, which could be interpreted as a defensive mechanism, because an autophagy inhibitor (chloroquine) increased triciribine-induced apoptosis. Triciribine synergized with vincristine, a chemotherapeutic drug employed for treating T-ALL patients, and targeted the side population of T-ALL cell lines, which might correspond to leukemia initiating cells. Our findings indicate that Akt inhibition, either alone or in combination with chemotherapeutic drugs, may serve as an efficient treatment towards T-ALL cells requiring upregulation of this signaling pathway for their proliferation and survival.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ribonucleosídeos/farmacologia , Autofagia/efeitos dos fármacos , Caspase 9/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Microscopia Eletrônica de Transmissão , Complexos Multiproteicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células da Side Population/citologia , Células da Side Population/efeitos dos fármacos , Células da Side Population/enzimologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo , Vincristina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA