Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Methods Mol Biol ; 2350: 105-123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34331282

RESUMO

Early detection of malignant tumors, micrometastases, and disseminated tumor cells is one of the effective way of fighting cancer. Among the many existing imaging methods like computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT), optical imaging with fluorescent probes is one of the most promising alternatives because it is fast, inexpensive, safe, sensitive, and specific. However, traditional fluorescent probes, based on organic fluorescent dyes, suffer from the low signal-to-noise ratio. Furthermore, conventional organic fluorescent dyes are unsuitable for deep tissue imaging because of the strong visible light absorption by biological tissues. The use of fluorescent semiconductor nanocrystals, or quantum dots (QDs), may overcome this limitation due to their large multiphoton cross section, which ensures efficient imaging of thick tissue sections inaccessible with conventional fluorescent probes. Moreover, the lower photobleaching and higher brightness of fluorescence signals from QDs ensures a much better discrimination of positive signals from the background. The use of fluorescent nanoprobes based on QDs conjugated to uniformly oriented high-affinity single-domain antibodies (sdAbs) may significantly increase the sensitivity and specificity due to better recognition of analytes and deeper penetration into tissues due to small size of such nanoprobes.Here, we describe a protocol for the fabrication of nanoprobes based on sdAbs and QDs, preparation of experimental xenograft mouse models for quality control, and multiphoton imaging of deep-tissue solid tumors, micrometastases, and disseminated tumor cells.


Assuntos
Imunofluorescência/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Pontos Quânticos , Anticorpos de Domínio Único , Linhagem Celular Tumoral , Imunofluorescência/normas , Humanos , Imunoconjugados/química , Imuno-Histoquímica/métodos , Sondas Moleculares , Imagem Multimodal/métodos , Nanopartículas , Micrometástase de Neoplasia , Imagem Óptica/métodos
2.
Oncoimmunology ; 10(1): 1854529, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33457075

RESUMO

The natural killer group 2 member D (NKG2D) receptor is a C-type lectin-like activating receptor mainly expressed by cytotoxic immune cells including NK, CD8+ T, γδ T and NKT cells and in some pathological conditions by a subset of CD4+ T cells. It binds a variety of ligands (NKG2DL) whose expressions is finely regulated by stress-related conditions. The NKG2DL/NKG2D axis plays a central and complex role in the regulation of immune responses against diverse cellular threats such as oncogene-mediated transformations or infections. We generated a panel of seven highly specific anti-human NKG2D single-domain antibodies targeting various epitopes. These single-domain antibodies were integrated into bivalent and bispecific antibodies using a versatile plug-and-play Fab-like format. Depending on the context, these Fab-like antibodies exhibited activating or inhibitory effects on the immune response mediated by the NKG2DL/NKG2D axis. In solution, the bivalent anti-NKG2D antibodies that compete with NKG2DL potently blocked the activation of NK cells seeded on immobilized MICA, thus constituting antagonizing candidates. Bispecific anti-NKG2DxHER2 antibodies that concomitantly engage HER2 on tumor cells and NKG2D on NK cells elicited cytotoxicity of unstimulated NK in a tumor-specific manner, regardless of their apparent affinities and epitopes. Importantly, the bispecific antibodies that do not compete with ligands binding retained their full cytotoxic activity in the presence of ligands, a valuable property to circumvent immunosuppressive effects induced by soluble ligands in the microenvironment.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Imunidade , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Microambiente Tumoral
3.
Front Immunol ; 10: 1593, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354732

RESUMO

Triple negative breast cancers (TNBC) remain a major medical challenge due to poor prognosis and limited treatment options. Mesothelin is a glycosyl-phosphatidyl inositol-linked membrane protein with restricted normal expression and high level expression in a large proportion of TNBC, thus qualifying as an attractive target. Its overexpression in breast tumors has been recently correlated with a decreased disease-free survival and an increase of distant metastases. The objective of the study was to investigate the relevance of a bispecific antibody-based immunotherapy approach through mesothelin targeting and CD16 engagement using a Fab-like bispecific format (MesobsFab). Using two TNBC cell lines with different level of surface mesothelin and epithelial/mesenchymal phenotypes, we showed that, in vitro, MesobsFab promotes the recruitment and penetration of NK cells into tumor spheroids, induces potent dose-dependent cell-mediated cytotoxicity of mesothelin-positive tumor cells, cytokine secretion, and decreases cell invasiveness. MesobsFab was able to induce cytotoxicity in resting human peripheral blood mononuclear cells (PBMC), mainly through its NK cells-mediated antibody dependent cell cytotoxicity (ADCC) activity. In vivo, the anti-tumor effect of MesobsFab depends upon a threshold of MSLN density on target cells. Collectively our data support mesothelin as a relevant therapeutic target for the subset of TNBC that overexpresses mesothelin characterized by a low overall and disease-free survival as well as the potential of MesobsFab as antibody-based immunotherapeutics.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Neoplasias da Mama/terapia , Proteínas Ligadas por GPI/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Receptores de IgG/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Citotoxicidade Celular Dependente de Anticorpos , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Epitopos , Feminino , Humanos , Mesotelina , Neoplasias de Mama Triplo Negativas/imunologia
4.
Sci Rep ; 8(1): 4595, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545609

RESUMO

Early detection of malignant tumours and, especially, micrometastases and disseminated tumour cells is still a challenge. In order to implement highly sensitive diagnostic tools we demonstrate the use of nanoprobes engineered from nanobodies (single-domain antibodies, sdAbs) and fluorescent quantum dots (QDs) for single- and two-photon detection and imaging of human micrometastases and disseminated tumour cells in ex vivo biological samples of breast and pancreatic metastatic tumour mouse models expressing human epidermal growth factor receptor 2 (HER2) or carcinoembryonic antigen (CEA). By staining thin (5-10 µm) paraffin and thick (50 µm) agarose tissue sections, we detected HER2- and CEA-positive human tumour cells infiltrating the surrounding tissues or metastasizing to different organs, including the brain, testis, lung, liver, and lymph nodes. Compared to conventional fluorescently labelled antibodies the sdAb-HER2-QD and sdAb-CEA-QD nanoprobes are superior in detecting micrometastases in tissue sections by lower photobleaching and higher brightness of fluorescence signals ensuring much better discrimination of positive signals versus background. Very high two-photon absorption cross-sections of QDs and small size of the nanoprobes ensure efficient imaging of thick tissue sections unattainable with conventional fluorescent probes. The nanobody-QD probes will help to improve early cancer diagnosis and prognosis of progression by assessing metastasis.


Assuntos
Neoplasias da Mama/patologia , Pontos Quânticos/química , Anticorpos de Domínio Único/imunologia , Animais , Neoplasias da Mama/metabolismo , Antígeno Carcinoembrionário/imunologia , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/química , Humanos , Camundongos , Camundongos Nus , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Micrometástase de Neoplasia , Receptor ErbB-2/imunologia , Anticorpos de Domínio Único/química , Transplante Heterólogo
5.
J Nucl Med ; 59(7): 1056-1062, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29572256

RESUMO

Mesothelin is a cell-surface glycoprotein restricted to mesothelial cells overexpressed in several types of cancer, including triple-negative breast cancer not responding to trastuzumab or hormone-based therapies. Mesothelin-targeting therapies are currently being developed. However, the identification of patients potentially eligible for such a therapeutic strategy remains challenging. The objective of this study was to perform the radiolabeling and preclinical evaluation of 99mTc-A1 and 99mTc-C6, two antimesothelin single-domain antibody (sdAb)-derived imaging agents. Methods: A1 and C6 were radiolabeled with 99mTc and evaluated in vitro on recombinant protein and cells, as well as in vivo in xenograft mouse models of the triple-negative breast cancer cell lines HCC70 (mesothelin-positive) and MDA-MB-231 (mesothelin-negative). Results: Both 99mTc-A1 and 99mTc-C6 bound mesothelin with high affinity in vitro, with 99mTc-A1 affinity being 2.4-fold higher than that of 99mTc-C6 (dissociation constant, 43.9 ± 4.0 vs. 107 ± 16 nM, P < 0.05). 99mTc-A1 and 99mTc-C6 remained stable in vivo in murine blood (>80% at 2 h) and ex vivo in human blood (>90% at 6 h). In vivo 99mTc-A1 uptake (percentage injected dose) in HCC70 tumors was 5-fold higher than in MDA-MB-231 tumors and 1.5-fold higher than that of 99mTc-C6 (2.34% ± 0.36% vs. 0.48% ± 0.18% and 1.56% ± 0.43%, respectively, P < 0.01) and resulted in elevated tumor-to-background ratios. In vivo competition experiments demonstrated the specificity of 99mTc-A1 uptake in HCC70 tumors. Conclusion: Mesothelin-positive tumors were successfully identified by SPECT using 99mTc-A1 and 99mTc-C6. Considering its superior characteristics, 99mTc-A1 was selected as the most suitable tool for further clinical translation.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Marcação por Isótopo , Ligantes , Mesotelina , Camundongos , Compostos de Organotecnécio/sangue , Compostos de Organotecnécio/química , Compostos de Organotecnécio/farmacocinética , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/patologia
6.
Nat Commun ; 8(1): 1967, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213077

RESUMO

Antibodies have enormous therapeutic and biotechnology potential. G protein-coupled receptors (GPCRs), the main targets in drug development, are of major interest in antibody development programs. Metabotropic glutamate receptors are dimeric GPCRs that can control synaptic activity in a multitude of ways. Here we identify llama nanobodies that specifically recognize mGlu2 receptors, among the eight subtypes of mGluR subunits. Among these nanobodies, DN10 and 13 are positive allosteric modulators (PAM) on homodimeric mGlu2, while DN10 displays also a significant partial agonist activity. DN10 and DN13 have no effect on mGlu2-3 and mGlu2-4 heterodimers. These PAMs enhance the inhibitory action of the orthosteric mGlu2/mGlu3 agonist, DCG-IV, at mossy fiber terminals in the CA3 region of hippocampal slices. DN13 also impairs contextual fear memory when injected in the CA3 region of hippocampal region. These data highlight the potential of developing antibodies with allosteric actions on GPCRs to better define their roles in vivo.


Assuntos
Medo/fisiologia , Hipocampo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Sítios de Ligação , Camelídeos Americanos , AMP Cíclico/metabolismo , Ciclopropanos , Ácido Glutâmico/sangue , Ácido Glutâmico/metabolismo , Glicina/análogos & derivados , Células HEK293 , Hipocampo/efeitos dos fármacos , Humanos , Fosfatos de Inositol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neurônios/fisiologia , Receptores Opioides
7.
Sci Rep ; 6: 21834, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26912069

RESUMO

The detection of tumours in an early phase of tumour development in combination with the knowledge of expression of tumour markers such as epidermal growth factor receptor (EGFR) is an important prerequisite for clinical decisions. In this study we applied the anti-EGFR nanobody (99m)Tc-D10 for visualizing small tumour lesions with volumes below 100 mm(3) by targeting EGFR in orthotopic human mammary MDA-MB-468 and MDA-MB-231 and subcutaneous human epidermoid A431 carcinoma mouse models. Use of nanobody (99m)Tc-D10 of a size as small as 15.5 kDa enables detection of tumours by single photon emission computed tomography (SPECT) imaging already 45 min post intravenous administration with high tumour uptake (>3% ID/g) in small MDA-MB-468 and A431 tumours, with tumour volumes of 52.5 mm(3) ± 21.2 and 26.6 mm(3) ± 16.7, respectively. Fast blood clearance with a serum half-life of 4.9 min resulted in high in vivo contrast and ex vivo tumour to blood and tissue ratios. In contrast, no accumulation of (99m)Tc-D10 in MDA-MB-231 tumours characterized by a very low expression of EGFR was observed. Here we present specific and high contrast in vivo visualization of small human tumours overexpressing EGFR by preclinical multi-pinhole SPECT shortly after administration of anti-EGFR nanobody (99m)Tc-D10.


Assuntos
Receptores ErbB/imunologia , Compostos de Organotecnécio/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/farmacologia , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Western Blotting , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cetuximab/química , Cetuximab/metabolismo , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Feminino , Citometria de Fluxo , Corantes Fluorescentes/química , Meia-Vida , Humanos , Marcação por Isótopo , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Compostos de Organotecnécio/química , Compostos de Organotecnécio/imunologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Tecnécio/química , Distribuição Tecidual , Tomografia Computadorizada por Raios X
8.
J Biomed Nanotechnol ; 11(7): 1201-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26307843

RESUMO

Mesothelin, a cancer biomarker overexpressed in tumors of epithelial origin, is a target for nanotechnology-based diagnostic, therapeutic, and prognostic applications. The currently available anti-mesothelin antibodies present limitations, including low penetration due to large size and/or lack of in vivo stability. Single domain antibodies (sdAbs) or nanobodies (Nbs) provide powerful solutions to these specific problems. We generated a phage-display library of Nbs that were amplified from B cells of a llama that was immunized with human recombinant mesothelin. Two nanobodies (Nb A1 and Nb C6) were selected on the basis of affinity (K(D) = 15 and 30 nM, respectively). Nb A1 was further modified by adding either a cysteine to permit maleimide-based bioconjugations or a sequence for the site-specific metabolic addition of a biotin in vivo. Both systems of conjugation (thiol-maleimide and streptavidin/biotin) were used to characterize and validate Nb A1 and to functionalize nanoparticles. We showed that anti-mesothelin Nb A1 could detect native and denatured mesothelin in various diagnostic applications, including flow cytometry, western blotting, immunofluorescence, and optical imaging. In conclusion, anti-mesothelin Nbs are novel, cost-effective, small, and single domain reagents with high affinity and specificity for the tumor-associated antigen mesothelin, which can be simply bioengineered for attachment to nanoparticles or modified surfaces using multiple bioconjugation strategies. These anti-mesothelin Nbs can be useful in both conventional and nanotechnology-based diagnostic, therapeutic and prognostic biomedical applications.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Proteínas Ligadas por GPI/imunologia , Nanopartículas/uso terapêutico , Frações Subcelulares/imunologia , Anticorpos Monoclonais/genética , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Células HeLa , Humanos , Mesotelina , Nanopartículas/química , Nanopartículas/ultraestrutura , Engenharia de Proteínas/métodos , Frações Subcelulares/patologia
9.
Anal Biochem ; 478: 26-32, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25766579

RESUMO

Compact single-domain antibodies (sdAbs) are nearly 13 times smaller than full-size monoclonal antibodies (mAbs) and have a number of advantages for biotechnological applications, such as small size, high specificity, solubility, stability, and great refolding capacity. Carcinoembryonic antigen (CEA) is a tumor-associated glycoprotein expressed in a variety of cancers. Detection of CEA on the tumor cell surface may be carried out using anti-CEA antibodies and conventional fluorescent dyes. Semiconductor quantum dots (QDs) are brighter and more photostable than organic dyes; they provide the possibility for labeling of different recognition molecules with QDs of different colors but excitable with the same wavelength of excitation. In this study, the abilities for specific detection of CEA expressed by tumor cells with anti-CEA sdAbs biotinylated in vitro and in vivo, as well as with anti-CEA mAbs biotinylated in vitro, were compared using flow cytometry and the conjugates of streptavidin with QDs (SA-QDs). The results demonstrated that either in vitro or in vivo biotinylated anti-CEA sdAbs are more sensitive for cell staining compared to biotinylated anti-CEA mAbs. The data also show that simultaneous use of biotinylated sdAbs with highly fluorescent SA-QDs can considerably improve the sensitivity of detection of CEA on tumor cell surfaces.


Assuntos
Antígeno Carcinoembrionário/análise , Pontos Quânticos/química , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Biotinilação , Linhagem Celular , Citometria de Fluxo/métodos , Humanos , Camundongos , Dados de Sequência Molecular
10.
ACS Nano ; 9(2): 1388-99, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25603171

RESUMO

The epidermal growth factor receptor (EGFR) is a cell-surface receptor with a single transmembrane domain and tyrosine kinase activity carried by the intracellular domain. This receptor is one of the four members of the ErbB family including ErbB2, ErbB3, and ErbB4. Ligand binding, like EGF binding, induces a conformational rearrangement of the receptor and induces a homo/hetero dimerization essentially with ErbB family receptors that leads to the phosphorylation of the kinase domain, triggering a signaling cascade. EGFR can also form inactive dimers in a ligand-independent way through interactions between cytoplasmic domains. To date, the conformation of EGFR extracellular domain engaged in these inactive dimers remains unclear. In this study, we describe the successful selection and characterization of llama anti-EGFR nanobodies and their use as innovative conformational sensors. We isolated three different specific anti-EGFR clones binding to three distinct epitopes. Interestingly, the binding of all three nanobodies was found highly sensitive to ligand stimulation. Two nanobodies, D10 and E10, can only bind the ligand-free EGFR conformation characterized by an intramolecular tether between domains II and IV, whereas nanobody G10 binds both ligand-free and ligand activated EGFR, with an 8-fold higher affinity for the extended conformation in the presence of ligand. Here we took advantage of these conformational probes to reveal the existence of tethered EGFR in EGFR/ErbB2 predimers. These biosensors represent important tools allowing the determination of EGFR conformations and should help the design of relevant inhibitors.


Assuntos
Técnicas Biossensoriais , Receptores ErbB/química , Receptores ErbB/imunologia , Multimerização Proteica , Receptor ErbB-2/química , Anticorpos de Domínio Único/imunologia , Animais , Especificidade de Anticorpos , Sítios de Ligação , Camelídeos Americanos , Linhagem Celular , Epitopos/imunologia , Humanos , Camundongos , Estrutura Quaternária de Proteína
11.
Antibodies (Basel) ; 5(1)2015 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31557983

RESUMO

As evidenced by the recent approvals of Removab (EU, Trion Pharma) in 2009 and of Blincyto (US, Amgen) in 2014, the high potential of bispecific antibodies in the field of immuno-oncology is eliciting a renewed interest from pharmaceutical companies. Supported by rapid advances in antibody engineering and the development of several technological platforms such as Triomab or bispecific T cell engagers (BiTEs), the "bispecifics" market has increased significantly over the past decade and may occupy a pivotal space in the future. Over 30 bispecific molecules are currently in different stages of clinical trials and more than 70 in preclinical phase. This review focuses on the clinical potential of bispecific antibodies as immune effector cell engagers in the onco-immunotherapy field. We summarize current strategies targeting various immune cells and their clinical interests. Furthermore, perspectives of bispecific antibodies in future clinical developments are addressed.

12.
Oncotarget ; 5(14): 5304-19, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24979648

RESUMO

Trastuzumab is established as treatment of HER2high metastatic breast cancers but many limitations impair its efficacy. Here, we report the design of a Fab-like bispecific antibody (HER2bsFab) that displays a moderate affinity for HER2 and a unique, specific and high affinity for FcγRIII. In vitro characterization showed that ADCC was the major mechanism of action of HER2bsFab as no significant HER2-driven effect was observed. HER2bsFab mediated ADCC at picomolar concentration against HER2high, HER2low as well as trastuzumab-refractive cell lines. In vivo HER2bsFab potently inhibited HER2high tumor growth by recruitment of mouse FcγRIII and IV-positive resident effector cells and more importantly, exhibited a net superiority over trastuzumab at inhibiting HER2low tumor growth. Moreover, FcγRIIIA-engagement by HER2bsFab was independent of V/F158 polymorphism and induced a stronger NK cells activation in response to target cell recognition. Thus, taking advantage of its epitope specificity and affinity for HER2 and FcγRIIIA, HER2bsFab exhibits potent anti-tumor activity against HER2low tumors while evading most of trastuzumab Fc-linked limitations thereby potentially enlarging the number of patients eligible for breast cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/terapia , Receptor ErbB-2/imunologia , Receptores de IgG/imunologia , Animais , Anticorpos Biespecíficos/imunologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Células Jurkat , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Nus , Distribuição Aleatória , Receptor ErbB-2/biossíntese , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nanomedicine ; 10(8): 1701-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24941465

RESUMO

An ideal multiphoton fluorescent nanoprobe should combine a nanocrystal with the largest possible two-photon absorption cross section (TPACS) and the smallest highly specific recognition molecules bound in an oriented manner. CdSe/ZnS quantum dots (QDs) conjugated to 13-kDa single-domain antibodies (sdAbs) derived from camelid IgG or streptavidin have been used as efficient two-photon excitation (TPE) probes for carcinoembryonic antigen (CEA) imaging on normal human appendix and colon carcinoma tissue. The TPACS for some conjugates was higher than 49,000 GM (Goeppert-Mayer units), considerably exceeding that of organic dyes being close to the theoretical value of 50,000 GM calculated for CdSe QDs. The ratio of sdAb-QD emission to the autofluorescence for 800 nm TPE was 40 times higher than that for 457.9 nm one-photon excitation. TPE ensures a clear discrimination of CEA-overexpressing tumor areas from normal tissue. Oriented sdAb-QD conjugates are bright specific labels for detecting low concentrations of antigens using multiphoton microscopy. FROM THE CLINICAL EDITOR: This study demonstrates carcinoembryonic antigen imaging on normal human appendix and colon carcinoma tissue utilizing CdSe/ZnS quantum dots conjugated to streptavidin or to 13-kDa single-domain antibodies as efficient two-photon excitation probes.


Assuntos
Diagnóstico por Imagem/métodos , Pontos Quânticos , Anticorpos de Domínio Único/química , Animais , Biomarcadores Tumorais , Técnicas In Vitro
14.
ACS Nano ; 8(6): 5682-95, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24873349

RESUMO

Despite the widespread availability of immunohistochemical and other methodologies for screening and early detection of lung and breast cancer biomarkers, diagnosis of the early stage of cancers can be difficult and prone to error. The identification and validation of early biomarkers specific to lung and breast cancers, which would permit the development of more sensitive methods for detection of early disease onset, is urgently needed. In this paper, ultra-small and bright nanoprobes based on quantum dots (QDs) conjugated to single domain anti-HER2 (human epidermal growth factor receptor 2) antibodies (sdAbs) were applied for immunolabeling of breast and lung cancer cell lines, and their performance was compared to that of anti-HER2 monoclonal antibodies conjugated to conventional organic dyes Alexa Fluor 488 and Alexa Fluor 568. The sdAbs-QD conjugates achieved superior staining in a panel of lung cancer cell lines with differential HER2 expression. This shows their outstanding potential for the development of more sensitive assays for early detection of cancer biomarkers.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias Pulmonares/metabolismo , Pontos Quânticos , Receptor ErbB-2/metabolismo , Anticorpos/química , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Técnicas de Cocultura , Citometria de Fluxo , Corantes Fluorescentes/química , Humanos , Imuno-Histoquímica , Macrófagos/metabolismo , Microscopia Confocal
15.
Mol Cell Proteomics ; 13(2): 653-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24361863

RESUMO

Phage display is a well-established procedure to isolate binders against a wide variety of antigens that can be performed on purified antigens, but also on intact cells. As selection steps are performed in vitro, it is possible to focus the outcome of the selection on relevant epitopes by performing some additional steps, such as depletion or competitive elutions. However in practice, the efficiency of these steps is often limited and can lead to inconsistent results. We have designed a new selection method named masked selection, based on the blockade of unwanted epitopes to favor the targeting of relevant ones. We demonstrate the efficiency and flexibility of this method by selecting single-domain antibodies against a specific portion of a fusion protein, by selecting binders against several members of the seven transmembrane receptor family using transfected HEK cells, or by selecting binders against unknown breast cancer markers not expressed on normal samples. The relevance of this approach for antibody-based therapies was further validated by the identification of four of these markers, Epithelial cell adhesion molecule, Transferrin receptor 1, Metastasis cell adhesion molecule, and Sushi containing domain 2, using immunoprecipitation and mass spectrometry. This new phage display strategy can be applied to any type of antibody fragments or alternative scaffolds, and is especially suited for the rapid discovery and identification of cell surface markers.


Assuntos
Técnicas de Visualização da Superfície Celular , Mapeamento de Epitopos/métodos , Epitopos/metabolismo , Proteínas/metabolismo , Antígenos/imunologia , Antígenos/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células HT29 , Células HeLa , Humanos , Imunoprecipitação , Células Jurkat , Células MCF-7 , Ligação Proteica , Proteínas/imunologia , Proteômica/métodos
16.
Mol Cancer Ther ; 12(8): 1481-91, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23757164

RESUMO

Antibody-dependent cell-mediated cytotoxicity, one of the most prominent modes of action of antitumor antibodies, suffers from important limitations due to the need for optimal interactions with Fcγ receptors. In this work, we report the design of a new bispecific antibody format, compact and linker-free, based on the use of llama single-domain antibodies that are capable of circumventing most of these limitations. This bispecific antibody format was created by fusing single-domain antibodies directed against the carcinoembryonic antigen and the activating FcγRIIIa receptor to human Cκ and CH1 immunoglobulin G1 domains, acting as a natural dimerization motif. In vitro and in vivo characterization of these Fab-like bispecific molecules revealed favorable features for further development as a therapeutic molecule. They are easy to produce in Escherichia coli, very stable, and elicit potent lysis of tumor cells by human natural killer cells at picomolar concentrations. Unlike conventional antibodies, they do not engage inhibitory FcγRIIb receptor, do not compete with serum immunoglobulins G for receptor binding, and their cytotoxic activity is independent of Fc glycosylation and FcγRIIIa polymorphism. As opposed to anti-CD3 bispecific antitumor antibodies, they do not engage regulatory T cells as these latter cells do not express FcγRIII. Studies in nonobese diabetic/severe combined immunodeficient gamma mice xenografted with carcinoembryonic antigen-positive tumor cells showed that Fab-like bispecific molecules in the presence of human peripheral blood mononuclear cells significantly slow down tumor growth. This new compact, linker-free bispecific antibody format offers a promising approach for optimizing antibody-based therapies.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos/farmacologia , Receptores de IgG/antagonistas & inibidores , Anticorpos de Domínio Único/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos/química , Antígeno Carcinoembrionário/imunologia , Linhagem Celular Tumoral , Citocinas/biossíntese , Estabilidade de Medicamentos , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Células Matadoras Naturais/imunologia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Polimorfismo Genético , Ligação Proteica/imunologia , Estabilidade Proteica , Receptores de IgG/genética , Receptores de IgG/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Biosyst ; 8(9): 2385-94, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22772166

RESUMO

Noninvasive early detection of breast cancer through the use of biomarkers is urgently needed since the risk of recurrence, morbidity, and mortality is closely related to disease stage at the time of primary surgery. A crucial issue in this approach is the availability of relevant markers and corresponding monoclonal antibodies suitable for the development of effective immunodiagnostic modalities. The identification of such markers from human pathological lesions and the isolation of specific antibodies using conventional approaches remain major challenges. Camelids produce functional antibodies devoid of light chains in which the single N-terminal domain of the heavy chain is fully capable of antigen binding. When produced as an independent domain, these so-called single-domain antibody fragments (sdAbs) or nanobodies have several advantages for biotechnological applications owing to their unique properties of size (13 kDa), stability, solubility, and expression yield. In this work, we have generated phage display libraries from animals immunized with breast cancer biopsies. These libraries were used to isolate sdAbs against known and relevant antigens such as HER2, or several cancer-specific sdAbs against unknown targets. We describe the identification of one these targets, cytokeratin 19, using affinity purification in combination with mass spectrometry. Some of these sdAbs were used in several straightforward diagnostic applications such as immunohistochemical analysis of tumor samples, multiplexed cytometric bead array analysis of crude samples, or an immune enrichment procedure of rare cells. Here, we demonstrate that phage display-based selection of single-domain antibodies is an efficient and high-throughput compatible approach to generate binders with excellent characteristics for the fast development of diagnostic and prognostic modalities.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Anticorpos de Domínio Único/metabolismo , Animais , Neoplasias da Mama/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunoprecipitação , Biblioteca de Peptídeos , Anticorpos de Domínio Único/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Células Tumorais Cultivadas
18.
J Virol ; 86(9): 4856-67, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22345475

RESUMO

HIV-1 Nef is essential for AIDS pathogenesis, but this viral protein is not targeted by antiviral strategies. The functions of Nef are largely related to perturbations of intracellular trafficking and signaling pathways through leucine-based and polyproline motifs that are required for interactions with clathrin-associated adaptor protein complexes and SH3 domain-containing proteins, such as the phagocyte-specific kinase Hck. We previously described a single-domain antibody (sdAb) targeting Nef and inhibiting many, but not all, of its biological activities. We now report a further development of this anti-Nef strategy through the demonstration of the remarkable inhibitory activity of artificial Nef ligands, called Neffins, comprised of the anti-Nef sdAb fused to modified SH3 domains. The Neffins inhibited all key activities of Nef, including Nef-mediated CD4 and major histocompatibility complex class I (MHC-I) cell surface downregulation and enhancement of virus infectivity. When expressed in T lymphocytes, Neffins specifically inhibited the Nef-induced mislocalization of the Lck kinase, which contributes to the alteration of the formation of the immunological synapse. In macrophages, Neffins inhibited the Nef-induced formation of multinucleated giant cells and podosome rosettes, and it counteracted the inhibitory activity of Nef on phagocytosis. Since we show here that these effects of Nef on macrophage and T cell functions were both dependent on the leucine-based and polyproline motifs, we confirmed that Neffins disrupted interactions of Nef with both AP complexes and Hck. These results demonstrate that it is possible to inhibit all functions of Nef, both in T lymphocytes and macrophages, with a single ligand that represents an efficient tool to develop new antiviral strategies targeting Nef.


Assuntos
Antivirais/metabolismo , HIV-1/metabolismo , Anticorpos de Cadeia Única/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Sequência de Aminoácidos , Antígenos CD4/metabolismo , Linhagem Celular , Regulação para Baixo/imunologia , Ordem dos Genes , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Macrófagos/metabolismo , Dados de Sequência Molecular , Fagocitose/imunologia , Ligação Proteica/imunologia , Transporte Proteico , Proteínas Proto-Oncogênicas c-hck/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Fator de Transcrição AP-1/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Domínios de Homologia de src/genética , Domínios de Homologia de src/imunologia
19.
Nanomedicine ; 8(4): 516-25, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21839049

RESUMO

Common strategy for diagnostics with quantum dots (QDs) utilizes the specificity of monoclonal antibodies (mAbs) for targeting. However QD-mAbs conjugates are not always well-suited for this purpose because of their large size. Here, we engineered ultrasmall nanoprobes through oriented conjugation of QDs with 13-kDa single-domain antibodies (sdAbs) derived from llama IgG. Monomeric sdAbs are 12 times smaller than mAbs and demonstrate excellent capacity for refolding. sdAbs were tagged with QDs through an additional cysteine residue integrated within the C terminal of the sdAb. This approach allowed us to develop sdAbs-QD nanoprobes comprising four copies of sdAbs coupled with a QD in a highly oriented manner. sdAbs-QD conjugates specific to carcinoembryonic antigen (CEA) demonstrated excellent specificity of flow cytometry quantitative discrimination of CEA-positive and CEA-negative tumor cells. Moreover, the immunohistochemical labeling of biopsy samples was found to be comparable or even superior to the quality obtained with gold standard protocols of anatomopathology practice. sdAbs-QD-oriented conjugates as developed represent a new generation of ultrasmall diagnostic probes for applications in high-throughput diagnostic platforms. FROM THE CLINICAL EDITOR: The authors report the development of sdAbs-QD-oriented conjugates, comprised of single domain antibodies that are 12 times smaller than regular mAb-s and quantum dots. These ultrasmall diagnostic probes represent a new generation of functionalized ODs for applications in high-throughput diagnostic platforms.


Assuntos
Imunoglobulina G/química , Sondas Moleculares/química , Pontos Quânticos , Anticorpos de Cadeia Única/química , Animais , Camelídeos Americanos , Antígeno Carcinoembrionário/química , Linhagem Celular Tumoral , Humanos , Neoplasias/diagnóstico
20.
Cancers (Basel) ; 3(2): 2554-96, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24212823

RESUMO

Our knowledge of tumor immunology has resulted in multiple approaches for the treatment of cancer. However, a gap between research of new tumors markers and development of immunotherapy has been established and very few markers exist that can be used for treatment. The challenge is now to discover new targets for active and passive immunotherapy. This review aims at describing recent advances in biomarkers and tumor antigen discovery in terms of antigen nature and localization, and is highlighting the most recent approaches used for their discovery including "omics" technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA