Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 135(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36052643

RESUMO

Cell size varies between cell types but is tightly regulated by cell intrinsic and extrinsic mechanisms. Cell size control is important for cell function, and changes in cell size are frequently observed in cancer. Here, we uncover a role for SETD2 in regulating cell size. SETD2 is a lysine methyltransferase and a tumor suppressor protein involved in transcription, RNA processing and DNA repair. At the molecular level, SETD2 is best known for associating with RNA polymerase II through its Set2-Rbp1 interacting (SRI) domain and methylating histone H3 on lysine 36 (H3K36) during transcription. Using multiple independent perturbation strategies, we identify SETD2 as a negative regulator of global protein synthesis rates and cell size. We provide evidence that overexpression of the H3K36 demethylase KDM4A or the oncohistone H3.3K36M also increase cell size. In addition, ectopic overexpression of a decoy SRI domain increased cell size, suggesting that the relevant substrate is engaged by SETD2 via its SRI domain. These data add a central role of SETD2 in regulating cellular physiology and warrant further studies on separating the different functions of SETD2 in cancer development.


Assuntos
Histonas , Neoplasias , Tamanho Celular , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina , Neoplasias/metabolismo , RNA Polimerase II/metabolismo , Proteínas Supressoras de Tumor/metabolismo
2.
Cell Stem Cell ; 26(3): 431-440.e8, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142663

RESUMO

Forward genetic screens with genome-wide CRISPR libraries are powerful tools for resolving cellular circuits and signaling pathways. Applying this technology to organoids, however, has been hampered by technical limitations. Here we report improved accuracy and robustness for pooled-library CRISPR screens by capturing sgRNA integrations in single organoids, substantially reducing required cell numbers for genome-scale screening. We applied our approach to wild-type and APC mutant human intestinal organoids to identify genes involved in resistance to TGF-ß-mediated growth restriction, a key process during colorectal cancer progression, and validated hits including multiple subunits of the tumor-suppressive SWI/SNF chromatin remodeling complex. Mutations within these genes require concurrent inactivation of APC to promote TGF-ß resistance and attenuate TGF-ß target gene transcription. Our approach can be applied to a variety of assays and organoid types to facilitate biological discovery in primary 3D tissue models.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Organoides , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Testes Genéticos , Humanos , Intestinos , Fator de Crescimento Transformador beta
3.
EMBO J ; 39(23): e105606, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433018

RESUMO

Chromosomes have an intrinsic tendency to segregate into compartments, forming long-distance contacts between loci of similar chromatin states. How genome compartmentalization is regulated remains elusive. Here, comparison of mouse ground-state embryonic stem cells (ESCs) characterized by open and active chromatin, and advanced serum ESCs with a more closed and repressed genome, reveals distinct regulation of their genome organization due to differential dependency on BAZ2A/TIP5, a component of the chromatin remodeling complex NoRC. On ESC chromatin, BAZ2A interacts with SNF2H, DNA topoisomerase 2A (TOP2A) and cohesin. BAZ2A associates with chromatin sub-domains within the active A compartment, which intersect through long-range contacts. We found that ground-state chromatin selectively requires BAZ2A to limit the invasion of active domains into repressive compartments. BAZ2A depletion increases chromatin accessibility at B compartments. Furthermore, BAZ2A regulates H3K27me3 genome occupancy in a TOP2A-dependent manner. Finally, ground-state ESCs require BAZ2A for growth, differentiation, and correct expression of developmental genes. Our results uncover the propensity of open chromatin domains to invade repressive domains, which is counteracted by chromatin remodeling to establish genome partitioning and preserve cell identity.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Genoma , Células-Tronco Pluripotentes/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA Topoisomerases Tipo II/metabolismo , Epigenômica , Regulação da Expressão Gênica , Histonas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Coesinas
4.
Nat Commun ; 10(1): 4986, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676777

RESUMO

Chemotherapy-resistant cancer recurrence is a major cause of mortality. In acute myeloid leukemia (AML), chemorefractory relapses result from the complex interplay between altered genetic, epigenetic and transcriptional states in leukemic cells. Here, we develop an experimental model system using in vitro lineage tracing coupled with exome, transcriptome and in vivo functional readouts to assess the AML population dynamics and associated molecular determinants underpinning chemoresistance development. We find that combining standard chemotherapeutic regimens with low doses of DNA methyltransferase inhibitors (DNMTi, hypomethylating drugs) prevents chemoresistant relapses. Mechanistically, DNMTi suppresses the outgrowth of a pre-determined set of chemoresistant AML clones with stemness properties, instead favoring the expansion of rarer and unfit chemosensitive clones. Importantly, we confirm the capacity of DNMTi combination to suppress stemness-dependent chemoresistance development in xenotransplantation models and primary AML patient samples. Together, these results support the potential of DNMTi combination treatment to circumvent the development of chemorefractory AML relapses.


Assuntos
Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide/genética , Transcriptoma/genética , Doença Aguda , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Linhagem da Célula/genética , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Decitabina/uso terapêutico , Doxorrubicina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/patologia
6.
Mol Cell ; 73(4): 670-683.e12, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30639241

RESUMO

Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.


Assuntos
Dano ao DNA , Replicação do DNA , Instabilidade Genômica , Neoplasias/genética , Clivagem do RNA , Precursores de RNA/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Transporte Ativo do Núcleo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Poliadenilação , Precursores de RNA/biossíntese , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Proteínas de Ligação a RNA
7.
PLoS Genet ; 13(12): e1007102, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29267285

RESUMO

Genomic location can inform on potential function and recruitment signals for chromatin-associated proteins. High mobility group (Hmg) proteins are of similar size as histones with Hmga1 and Hmga2 being particularly abundant in replicating normal tissues and in cancerous cells. While several roles for Hmga proteins have been proposed we lack a comprehensive description of their genomic location as a function of chromatin, DNA sequence and functional domains. Here we report such a characterization in mouse embryonic stem cells in which we introduce biotin-tagged constructs of wild-type and DNA-binding domain mutants. Comparative analysis of the genome-wide distribution of Hmga proteins reveals pervasive binding, a feature that critically depends on a functional DNA-binding domain and which is shared by both Hmga proteins. Assessment of the underlying queues instructive for this binding modality identifies AT richness, defined as high frequency of A or T bases, as the major criterion for local binding. Additionally, we show that other chromatin states such as those linked to cis-regulatory regions have little impact on Hmga binding both in stem and differentiated cells. As a consequence, Hmga proteins are preferentially found at AT-rich regions such as constitutively heterochromatic regions but are absent from enhancers and promoters arguing for a limited role in regulating individual genes. In line with this model, we show that genetic deletion of Hmga proteins in stem cells causes limited transcriptional effects and that binding is conserved in neuronal progenitors. Overall our comparative study describing the in vivo binding modality of Hmga1 and Hmga2 identifies the proteins' preference for AT-rich DNA genome-wide and argues against a suggested function of Hmga at regulatory regions. Instead we discover pervasive binding with enrichment at regions of higher AT content irrespective of local variation in chromatin modifications.


Assuntos
Sequência Rica em At , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Animais , Composição de Bases , Sequência de Bases , Cromatina/genética , Cromatina/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Histonas/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico
8.
EMBO J ; 36(23): 3421-3434, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29074627

RESUMO

DNA methylation is a prevalent epigenetic modification involved in transcriptional regulation and essential for mammalian development. While the genome-wide distribution of this mark has been studied to great detail, the mechanisms responsible for its correct deposition, as well as the cause for its aberrant localization in cancers, have not been fully elucidated. Here, we have compared the activity of individual DNMT3A isoforms in mouse embryonic stem and neuronal progenitor cells and report that these isoforms differ in their genomic binding and DNA methylation activity at regulatory sites. We identify that the longer isoform DNMT3A1 preferentially localizes to the methylated shores of bivalent CpG island promoters in a tissue-specific manner. The isoform-specific targeting of DNMT3A1 coincides with elevated hydroxymethylcytosine (5-hmC) deposition, suggesting an involvement of this isoform in mediating turnover of DNA methylation at these sites. Through genetic deletion and rescue experiments, we demonstrate that this isoform-specific recruitment plays a role in de novo DNA methylation at CpG island shores, with potential implications on H3K27me3-mediated regulation of developmental genes.


Assuntos
Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Animais , Sítios de Ligação , Diferenciação Celular , Linhagem Celular , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
9.
Nat Commun ; 7: 11310, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27090491

RESUMO

Histone H3 trimethylation of lysine 9 (H3K9me3) and proteins of the heterochromatin protein 1 (HP1) family are hallmarks of heterochromatin, a state of compacted DNA essential for genome stability and long-term transcriptional silencing. The mechanisms by which H3K9me3 and HP1 contribute to chromatin condensation have been speculative and controversial. Here we demonstrate that human HP1ß is a prototypic HP1 protein exemplifying most basal chromatin binding and effects. These are caused by dimeric and dynamic interaction with highly enriched H3K9me3 and are modulated by various electrostatic interfaces. HP1ß bridges condensed chromatin, which we postulate stabilizes the compacted state. In agreement, HP1ß genome-wide localization follows H3K9me3-enrichment and artificial bridging of chromatin fibres is sufficient for maintaining cellular heterochromatic conformation. Overall, our findings define a fundamental mechanism for chromatin higher order structural changes caused by HP1 proteins, which might contribute to the plastic nature of condensed chromatin.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Sequência de Aminoácidos , Western Blotting , Linhagem Celular Tumoral , Cromatina/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Cristalografia por Raios X , Heterocromatina/genética , Histonas/química , Humanos , Cinética , Lisina/química , Metilação , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Eletricidade Estática
10.
Mol Cell ; 61(3): 474-485, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26833088

RESUMO

Chromatin ADP-ribosylation regulates important cellular processes. However, the exact location and magnitude of chromatin ADP-ribosylation are largely unknown. A robust and versatile method for assessing chromatin ADP-ribosylation is therefore crucial for further understanding its function. Here, we present a chromatin affinity precipitation method based on the high specificity and avidity of two well-characterized ADP-ribose binding domains to map chromatin ADP-ribosylation at the genome-wide scale and at specific loci. Our ADPr-ChAP method revealed that in cells exposed to oxidative stress, ADP-ribosylation of chromatin scales with histone density, with highest levels at heterochromatic sites and depletion at active promoters. Furthermore, in growth factor-induced adipocyte differentiation, increased chromatin ADP-ribosylation was observed at PPARγ target genes, whose expression is ADP-ribosylation dependent. In combination with deep-sequencing and conventional chromatin immunoprecipitation, the established ADPr-ChAP provides a valuable resource for the bioinformatic comparison of ADP-ribosylation with other chromatin modifications and for addressing its role in other biologically important processes.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Adipócitos/metabolismo , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipogenia , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Cromatina/genética , Biologia Computacional , Regulação da Expressão Gênica , Hormônio do Crescimento/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Estresse Oxidativo , PPAR gama/genética , PPAR gama/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Transfecção
11.
Plant Cell ; 22(1): 34-47, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20097869

RESUMO

Epigenetic changes of gene expression can potentially be reversed by developmental programs, genetic manipulation, or pharmacological interference. However, a case of transcriptional gene silencing, originally observed in tetraploid Arabidopsis thaliana plants, created an epiallele resistant to many mutations or inhibitor treatments that activate many other suppressed genes. This raised the question about the molecular basis of this extreme stability. A combination of forward and reverse genetics and drug application provides evidence for an epigenetic double lock that is only alleviated upon the simultaneous removal of both DNA methylation and histone methylation. Therefore, the cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic states and contributes to heritable diversity of gene expression patterns.


Assuntos
Arabidopsis/genética , Cromatina/metabolismo , Epigênese Genética , Adenosil-Homocisteinase/genética , Alelos , Proteínas de Arabidopsis/genética , Metilação de DNA , DNA Bacteriano/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Inibidores de Histona Desacetilases/metabolismo , Histonas/metabolismo , Mutagênese Insercional , Mutação , Poliploidia , Análise de Sequência de DNA , Fatores de Transcrição/genética , Transcrição Gênica
12.
Plant J ; 57(3): 542-54, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18826433

RESUMO

Covalent modification by methylation of cytosine residues represents an important epigenetic hallmark. While sequence analysis after bisulphite conversion allows correlative analyses with single-base resolution, functional analysis by interference with DNA methylation is less precise, due to the complexity of methylation enzymes and their targets. A cytidine analogue, 5-azacytidine, is frequently used as an inhibitor of DNA methyltransferases, but its rapid degradation in aqueous solution is problematic for culture periods of longer than a few hours. Application of zebularine, a more stable cytidine analogue with a similar mode of action that is successfully used as a methylation inhibitor in Neurospora and mammalian tumour cell lines, can significantly reduce DNA methylation in plants in a dose-dependent and transient manner independent of sequence context. Demethylation is connected with transcriptional reactivation and partial decondensation of heterochromatin. Zebularine represents a promising new and versatile tool for investigating the role of DNA methylation in plants with regard to transcriptional control, maintenance and formation of (hetero-) chromatin.


Assuntos
Citidina/análogos & derivados , Citosina/metabolismo , Metilação de DNA/efeitos dos fármacos , DNA de Plantas/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Citidina/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Relação Dose-Resposta a Droga , Genoma de Planta , Medicago sativa/genética , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/metabolismo
13.
Anal Biochem ; 375(2): 354-60, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18249178

RESUMO

The DNA of many eukaryotes is methylated at specific cytosine residues in connection with gene regulation. Here we report a method for the quantification of global cytosine methylation based on enzymatic hydrolysis of DNA, dephosphorylation, and subsequent high-performance cation exchange chromatography. Nucleosides are separated in less than 3 min under isocratic conditions on a benzenesulfonic acid-modified silica phase and detected by UV absorption. As little as 1 microg of DNA is sufficient to measure 5-methyldeoxycytosine levels with a typical relative standard deviation of less than 3%. As a proof of concept, the method was applied for analysis of DNA from several Arabidopsis thaliana mutants affected in DNA methylation and from Medicago sativa seedlings treated with the environmental pollutant chromium(VI).


Assuntos
Cromatografia por Troca Iônica/métodos , Metilação de DNA , DNA/isolamento & purificação , DNA/metabolismo , Animais , Arabidopsis/metabolismo , Cromatografia Líquida de Alta Pressão , Cromo/farmacologia , Cisteína/análise , Cisteína/metabolismo , Citosina/metabolismo , DNA/genética , Metilação de DNA/efeitos dos fármacos , Genoma de Planta/genética , Medicago sativa/efeitos dos fármacos , Medicago sativa/metabolismo , Mutação , Reprodutibilidade dos Testes , Plântula/efeitos dos fármacos , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA