Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37258039

RESUMO

BACKGROUND: An increased incidence of thrombotic complications associated with an increased mortality rate has been observed under immune checkpoint inhibition (ICI). Recent investigations on the coagulation pathways have highlighted the direct role of key coagulatory proteins and platelets in cancer initiation, angiogenesis and progression. The aim of this study was to evaluate the prognostic value of von Willebrand factor (vWF) and its regulatory enzyme a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), D-dimers and platelets in a cohort of patients with metastatic melanoma receiving ICI. METHODS: In a prospective cohort of 83 patients with metastatic melanoma, we measured the systemic levels of vWF-antigen (vWF:Ag), ADAMTS13 activity, D-dimers and platelets, before the beginning of the treatment (baseline), and 6, 12 and 24 weeks after. In parallel, we collected standard biological parameters used in clinical routine to monitor melanoma response (lactate deshydrogenase (LDH), S100). The impact of neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein (CRP) on overall survival (OS) in patients receiving ICI was assessed. Univariable and multivariable Cox proportional models were then used to investigate any potential association of these parameters to clinical progression (progression-free survival (PFS) and OS). Baseline values and variations over therapy course were compared between primary responders and resistant patients. RESULTS: Patients with melanoma present with dysregulated levels of vWF:Ag, ADAMTS13 activity, D-dimers, LDH, S100 and CRP at the beginning of treatment. With a median clinical follow-up of 26 months, vWF:Ag interrogated as a continuous variable was significantly associated with PFS in univariate and multivariate analysis (HR=1.04; p=0.007). Lower values of vWF:Ag at baseline were observed in the primary responders group (median: 29.4 µg/mL vs 32.9 µg/mL; p=0.048) when compared with primary resistant patients. As for OS, we found an association with D-dimers and ADAMTS13 activity in univariate analysis and vWF:Ag in univariate and multivariate analysis including v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation and Eastern Cooperative Oncology Group (ECOG) performance status. Follow-up over the course of treatment depicts different evolution profiles for vWF:Ag between the primary response and resistance groups. CONCLUSIONS: In this prospective cohort, coagulatory parameters such as ADAMTS13 activity and D-dimers are associated with OS but baseline vWF:Ag levels appeared as the only parameter associated with response and OS to ICI. This highlights a potential role of vWF as a biomarker to monitor ICI response of patients with malignant melanoma.


Assuntos
Melanoma , Fator de von Willebrand , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Prognóstico , Estudos Prospectivos , Fator de von Willebrand/metabolismo
2.
Cancer Res ; 83(8): 1299-1314, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36652557

RESUMO

Crossing the blood-brain barrier is a crucial, rate-limiting step of brain metastasis. Understanding of the mechanisms of cancer cell extravasation from brain microcapillaries is limited as the underlying cellular and molecular processes cannot be adequately investigated using in vitro models and endpoint in vivo experiments. Using ultrastructural and functional imaging, we demonstrate that dynamic changes of activated brain microcapillaries promote the mandatory first steps of brain colonization. Successful extravasation of arrested cancer cells occurred when adjacent capillary endothelial cells (EC) entered into a distinct remodeling process. After extravasation, capillary loops were formed, which was characteristic of aggressive metastatic growth. Upon cancer cell arrest in brain microcapillaries, matrix-metalloprotease 9 (MMP9) was expressed. Inhibition of MMP2/9 and genetic perturbation of MMP9 in cancer cells, but not the host, reduced EC projections, extravasation, and brain metastasis outgrowth. These findings establish an active role of ECs in the process of cancer cell extravasation, facilitated by cross-talk between the two cell types. This extends our understanding of how host cells can contribute to brain metastasis formation and how to prevent it. SIGNIFICANCE: Tracking single extravasating cancer cells using multimodal correlative microscopy uncovers a brain seeding mechanism involving endothelial remodeling driven by cancer cell-derived MMP9, which might enable the development of approaches to prevent brain metastasis. See related commentary by McCarty, p. 1167.


Assuntos
Neoplasias Encefálicas , Endotélio Vascular , Humanos , Endotélio Vascular/patologia , Células Endoteliais/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362165

RESUMO

Ingenol mebutate (IM) is highly effective in the treatment of human papillomavirus (HPV)-induced anogenital warts (AGW) leading to fast ablation within hours. However, the exact mode of action is still largely unknown. We performed dermoscopy, in vivo confocal microscopy (CLM), histology, immunohistochemistry, and immunofluorescence to gain insights in mechanisms of IM treatment in AGW. In addition, we used in vitro assays (ELISA, HPV-transfection models) to further investigate in vivo findings. IM treatment leads to a strong recruitment of neutrophils with thrombosis of small skin vessels within 8 h, in a sense of immunothrombosis. In vivo and in vitro analyses showed that IM supports a prothrombotic environment by endothelial cell activation and von Willebrand factor (VWF) secretion, in addition to induction of neutrophil extracellular traps (NETosis). IM superinduces CXCL8/IL-8 expression in HPV-E6/E7 transfected HaCaT cells when compared to non-infected keratinocytes. Rapid ablation of warts after IM treatment can be well explained by the observed immunothrombosis. This new mechanism has so far only been observed in HPV-induced lesions and is completely different from the mechanisms we see in the treatment of transformed keratinocytes in actinic keratosis. Our initial findings indicate an HPV-specific effect, which could be also of interest for the treatment of other HPV-induced lesions. Larger studies are now needed to further investigate the potential of IM in different HPV tumors.


Assuntos
Condiloma Acuminado , Diterpenos , Ceratose Actínica , Infecções por Papillomavirus , Anormalidades da Pele , Verrugas , Humanos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Condiloma Acuminado/tratamento farmacológico , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Ceratose Actínica/tratamento farmacológico , Papillomaviridae , Necrose
4.
Cancers (Basel) ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36428768

RESUMO

Immune checkpoint inhibition (ICI) has yielded remarkable results in prolonging survival of metastatic melanoma patients but only a subset of individuals treated respond to therapy. Success of ICI treatment appears to depend on the number of tumor-infiltrating effector T-cells, which are known to be influenced by activated eosinophils. To verify the co-occurrence of activated eosinophils and T-cells in melanoma, immunofluorescence was performed in 285 primary or metastatic tumor tissue specimens from 118 patients. Moreover, eosinophil counts and activity markers such as eosinophil cationic protein (ECP) and eosinophil peroxidase (EPX) were measured in the serum before therapy start and before the 4th infusion of ICI in 45 metastatic unresected melanoma patients. We observed a positive correlation between increased tumor-infiltrating eosinophils and T-cells associated with delayed melanoma progression. High baseline levels of eosinophil count, serum ECP and EPX were linked to prolonged progression-free survival in metastatic melanoma. Our data provide first indications that activated eosinophils are related to the T-cell-inflamed tumor microenvironment and could be considered as potential future prognostic biomarkers in melanoma.

5.
Cells ; 11(20)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36291142

RESUMO

Breast cancer (BC) is the second-most common cause of brain metastases (BM) and BCBM patients have a reduced quality of life and a poor prognosis. Hyaluronan (HA), and in particular the hyaluronidase Hyal-1, has been already linked to the development of BCBM, and therefore presents an interesting opportunity to develop new effective therapeutic options. HA metabolism was further discovered by the CRISPR/Cas9-mediated knockout of HYAL1 and the shRNA-mediated down-regulation of HA-receptor CD44 in the brain-seeking triple-negative breast cancer (TNBC) cell line MDA-MB-231-BR. Therefore, the impact of Hyal-1 on adhesion, disruption, and invasion through the brain endothelium, both in vitro and in vivo, was studied. Our analysis points out a key role of Hyal-1 and low-molecular-weight HA (LMW-HA) in the formation of a pericellular HA-coat in BC cells, which in turn promotes tumor cell adhesion, disruption, and migration through the brain endothelium in vitro as well as the extent of BM in vivo. CD44 knockdown in MDA-MB-231-BR significantly reduced the pericellular HA-coat on these cells, and, consequently, tumor cell adhesion and invasion through the brain endothelium. Thus, the interaction between Hyal-1-generated LMW-HA fragments and the HA-receptor CD44 might represent a potential target for future therapeutic options in BC patients with a high risk of cerebral metastases formation.


Assuntos
Neoplasias Encefálicas , Ácido Hialurônico , Hialuronoglucosaminidase , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Qualidade de Vida , RNA Interferente Pequeno , Neoplasias de Mama Triplo Negativas/patologia
6.
Proc Natl Acad Sci U S A ; 119(33): e2122716119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35960843

RESUMO

The microenvironment of malignant melanomas defines the properties of tumor blood vessels and regulates infiltration and vascular dissemination of immune and cancer cells, respectively. Previous research in other cancer entities suggested the complement system as an essential part of the tumor microenvironment. Here, we confirm activation of the complement system in samples of melanoma patients and murine melanomas. We identified the tumor endothelium as the starting point of the complement cascade. Generation of complement-derived C5a promoted the recruitment of neutrophils. Upon contact with the vascular endothelium, neutrophils were further activated by complement membrane attack complexes (MACs). MAC-activated neutrophils release neutrophil extracellular traps (NETs). Close to the blood vessel wall, NETs opened the endothelial barrier as indicated by an enhanced vascular leakage. This facilitated the entrance of melanoma cells into the circulation and their systemic spread. Depletion of neutrophils or lack of MAC formation in complement component 6 (C6)-deficient animals protected the vascular endothelium and prevented vascular intravasation of melanoma cells. Our data suggest that inhibition of MAC-mediated neutrophil activation is a potent strategy to abolish hematogenous dissemination in melanoma.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento , Endotélio Vascular , Armadilhas Extracelulares , Melanoma , Neutrófilos , Microambiente Tumoral , Animais , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Proteínas do Sistema Complemento , Endotélio Vascular/fisiopatologia , Humanos , Melanoma/irrigação sanguínea , Melanoma/imunologia , Melanoma/patologia , Camundongos , Neutrófilos/imunologia , Permeabilidade
7.
Matrix Biol ; 111: 76-94, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35690300

RESUMO

Heparan sulfate (HS), a highly negatively charged glycosaminoglycan, is ubiquitously present in all tissues and also exposed on the surface of mammalian cells. A plethora of molecules such as growth factors, cytokines or coagulation factors bear HS binding sites. Accordingly, HS controls the communication of cells with their environment and therefore numerous physiological and pathophysiological processes such as cell adhesion, migration, and cancer cell metastasis. In the present work, we found that HS exposed by blood circulating melanoma cells recruited considerable amounts of plasmatic von Willebrand factor (vWF) to the cellular surface. Analyses assisted by super-resolution microscopy indicated that HS and vWF formed a tight molecular complex. Enzymatic removal of HS or genetic engineering of the HS biosynthesis showed that a reduced length of the HS chains or complete lack of HS was associated with significantly reduced vWF encapsulation. In microfluidic experiments, mimicking a tumor-activated vascular system, we found that vWF-HS complexes prevented vascular adhesion. In line with this, single molecular force spectroscopy suggested that the vWF-HS complex promoted the repulsion of circulating cancer cells from the blood vessel wall to counteract metastasis. Experiments in wild type and vWF knockout mice confirmed that the HS-vWF complex at the melanoma cell surface attenuated hematogenous metastasis, whereas melanoma cells lacking HS evade the anti-metastatic recognition by vWF. Analysis of tissue samples obtained from melanoma patients validated that metastatic melanoma cells produce less HS. Transcriptome data further suggest that attenuated expression of HS-related genes correlate with metastases and reduced patients' survival. In conclusion, we showed that HS-mediated binding of plasmatic vWF to the cellular surface can reduce the hematogenous spread of melanoma. Cancer cells with low HS levels evade vWF recognition and are thus prone to form metastases. Therefore, therapeutic expansion of the cancer cell exposed HS may prevent tumor progression.


Assuntos
Heparitina Sulfato , Melanoma , Fator de von Willebrand , Animais , Adesão Celular , Heparitina Sulfato/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Knockout , Metástase Neoplásica , Ligação Proteica , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
8.
Mol Ther ; 30(4): 1536-1552, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35031433

RESUMO

Extravasation of circulating tumor cells (CTCs) is critical for metastasis and is initiated by adhesive interactions between glycoligands on CTCs and E-selectin on endothelia. Here, we show that the clinically approved proteasome inhibitor bortezomib (BZM; Velcade) counteracts the cytokine-dependent induction of E-selectin in the lung mediated by the primary tumor, thereby impairing endothelial adhesion and thus spontaneous lung metastasis in vivo. However, the efficacy of BZM crucially depends on the tumor cells' E-selectin ligands, which determine distinct adhesion patterns. The canonical ligands sialyl-Lewis A (sLeA) and sLeX mediate particularly high-affinity E-selectin binding so that the incomplete E-selectin-reducing effect of BZM is not sufficient to disrupt adhesion or metastasis. In contrast, tumor cells lacking sLeA/X nevertheless bind E-selectin, but with low affinity, so that adhesion and lung metastasis are significantly diminished. Such low-affinity E-selectin ligands apparently consist of sialylated MGAT5 products on CD44. BZM no longer has anti-metastatic activity after CD44 knockdown in sLeA/X-negative tumor cells or E-selectin knockout in mice. sLeA/X can be determined by immunohistochemistry in cancer samples, which might aid patient stratification. These data suggest that BZM might act as a drug for inhibiting extravasation and thus distant metastasis formation in malignancies expressing low-affinity E-selectin ligands.


Assuntos
Selectina E , Neoplasias Pulmonares , Animais , Bortezomib/farmacologia , Antígeno CA-19-9/farmacologia , Adesão Celular , Selectina E/genética , Selectina E/metabolismo , Humanos , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Metástase Neoplásica , Oligossacarídeos , Antígeno Sialil Lewis X
9.
Cancer Treat Rev ; 102: 102322, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34922151

RESUMO

Advances in understanding the molecular mechanisms of tumor progression have achieved impressive progress in the treatment of cancer and so-called immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy. Indeed, antibody-based drugs blocking immune escape of tumor cells by modulation of T cell responses are increasingly utilized for a wide range of tumor entities. Nonetheless, response rates remain limited, and the development of secondary resistance is a common problem. In addition, by increasing the immune response a variety of severe side effects are provoked. Next to autoimmune responses, activation of the complement system and skin toxicity, an increased incidence for thrombotic complications has been observed associated with an increased mortality rate. Based on this, it can be postulated that the interplay of coagulation with inflammation in the tumor microenvironment is relevant for each step in the tumor life cycle. This review focuses on the coagulation as central player fostering mechanisms associated with tumor progression. Thus, a better understanding of the molecular pathways involved in the complex interaction of circulating tumor cells, the plasmatic coagulation and immune cells may help to improve therapeutic concepts reducing mortality and morbidity associated with cancer.


Assuntos
Coagulação Sanguínea/imunologia , Heparina de Baixo Peso Molecular/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Inflamação/sangue , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Anticoagulantes/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Inflamação/imunologia , Inflamação/patologia , Neoplasias/imunologia , Trombose/sangue , Trombose/tratamento farmacológico , Trombose/patologia , Evasão Tumoral/efeitos dos fármacos
10.
Blood ; 137(9): 1219-1232, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33270819

RESUMO

Clinically relevant brain metastases (BMs) frequently form in cancer patients, with limited options for effective treatment. Circulating cancer cells must first permanently arrest in brain microvessels to colonize the brain, but the critical factors in this process are not well understood. Here, in vivo multiphoton laser-scanning microscopy of the entire brain metastatic cascade allowed unprecedented insights into how blood clot formation and von Willebrand factor (VWF) deposition determine the arrest of circulating cancer cells and subsequent brain colonization in mice. Clot formation in brain microvessels occurred frequently (>95%) and specifically at intravascularly arrested cancer cells, allowing their long-term arrest. An extensive clot embedded ∼20% of brain-arrested cancer cells, and those were more likely to successfully extravasate and form a macrometastasis. Mechanistically, the generation of tissue factor-mediated thrombin by cancer cells accounted for local activation of plasmatic coagulation in the brain. Thrombin inhibition by treatment with low molecular weight heparin or dabigatran and an anti-VWF antibody prevented clot formation, cancer cell arrest, extravasation, and the formation of brain macrometastases. In contrast, tumor cells were not able to directly activate platelets, and antiplatelet treatments did reduce platelet dispositions at intravascular cancer cells but did not reduce overall formation of BMs. In conclusion, our data show that plasmatic coagulation is activated early by intravascular tumor cells in the brain with subsequent clot formation, which led us to discover a novel and specific mechanism that is crucial for brain colonization. Direct or indirect thrombin and VWF inhibitors emerge as promising drug candidates for trials on prevention of BMs.


Assuntos
Coagulação Sanguínea , Neoplasias Encefálicas/sangue , Neoplasias da Mama/patologia , Melanoma/patologia , Células Neoplásicas Circulantes/patologia , Trombose/sangue , Animais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/complicações , Pontos de Checagem do Ciclo Celular , Modelos Animais de Doenças , Feminino , Humanos , Melanoma/sangue , Melanoma/complicações , Camundongos , Trombose/etiologia , Trombose/patologia , Fator de von Willebrand/análise
12.
Neurooncol Adv ; 3(1): vdab175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993481

RESUMO

BACKGROUND: The prognosis of patients with brain metastases (BM) is poor despite advances in our understanding of the underlying pathophysiology. The high incidence of thrombotic complications defines tumor progression and the high mortality rate. We, therefore, postulated that von Willebrand factor (VWF) promotes BM via its ability to induce platelet aggregation and thrombosis. METHODS: We measured the abundance of VWF in the blood and intravascular platelet aggregates of patients with BM, and determined the specific contribution of endothelial and platelet-derived VWF using in vitro models and microfluidics. The relevance for the brain metastatic cascade in vivo was demonstrated in ret transgenic mice, which spontaneously develop BM, and by the intracardiac injection of melanoma cells. RESULTS: Higher levels of plasma VWF in patients with BM were associated with enhanced intraluminal VWF fiber formation and platelet aggregation in the metastatic tissue and peritumoral regions. Platelet activation triggered the formation of VWF multimers, promoting platelet aggregation and activation, in turn enhancing tumor invasiveness. The absence of VWF in platelets, or the blocking of platelet activation, abolished platelet aggregation, and reduced tumor cell transmigration. Anticoagulation and platelet inhibition consistently reduced the number of BM in preclinical animal models. CONCLUSIONS: Our data indicate that platelet-derived VWF is involved in cerebral clot formation and in metastatic growth of melanoma in the brain. Targeting platelet activation with low-molecular-weight heparins represents a promising therapeutic approach to prevent melanoma BM.

13.
Mol Cancer Res ; 18(7): 1099-1109, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32234826

RESUMO

Cancer-related venous thromboembolisms (VTE) are associated with metastasis and reduced survival in patients with urothelial cancer of the bladder. Although previous reports suggest the contribution of tissue factor and podoplanin, the mechanistic linkage between VTE and bladder cancer cell-derived molecules is unknown. Therefore, we compared distinct procoagulant pathways in four different cell lines. In vitro findings were further confirmed by microfluidic experiments mimicking the pathophysiology of tumor blood vessels and in tissue samples of patients with bladder cancer by transcriptome analysis and immunohistology. In vitro and microfluidic experiments identified bladder cancer-derived VEGF-A as highly procoagulant because it promoted the release of von Willebrand factor (VWF) from endothelial cells and thus platelet aggregation. In tissue sections from patients with bladder cancer, we found that VWF-mediated blood vessel occlusions were associated with a poor outcome. Transcriptome data further indicate that elevated expression levels of enzymes modulating VEGF-A availability were significantly connected to a decreased survival in patients with bladder cancer. In comparison with previously postulated molecular players, we identified tumor cell-derived VEGF-A and endothelial VWF as procoagulant mediators in bladder cancer. Therapeutic strategies that prevent the VEGF-A-mediated release of VWF may reduce tumor-associated hypercoagulation and metastasis in patients with bladder cancer. IMPLICATIONS: We identified the VEGF-A-mediated release of VWF from endothelial cells to be associated with bladder cancer progression.


Assuntos
Carcinoma de Células de Transição/metabolismo , Células Endoteliais/citologia , Neoplasias da Bexiga Urinária/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo , Carcinoma de Células de Transição/genética , Linhagem Celular Tumoral , Progressão da Doença , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas Analíticas Microfluídicas , Metástase Neoplásica , Proteômica , Neoplasias da Bexiga Urinária/genética
14.
Sci Rep ; 10(1): 22443, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33384430

RESUMO

The glycocalyx regulates the interaction of mammalian cells with extracellular molecules, such as cytokines. However, it is unknown to which extend the glycocalyx of distinct cancer cells control the binding and uptake of nanoparticles. In the present study, exome sequencing data of cancer patients and analysis of distinct melanoma and bladder cancer cell lines suggested differences in cancer cell-exposed glycocalyx components such as heparan sulphate. Our data indicate that glycocalyx differences affected the binding of cationic chitosan nanocapsules (Chi-NCs). The pronounced glycocalyx of bladder cancer cells enhanced the internalisation of nanoencapsulated capsaicin. Consequently, capsaicin induced apoptosis in the cancer cells, but not in the less glycosylated benign urothelial cells. Moreover, we measured counterion condensation on highly negatively charged heparan sulphate chains. Counterion condensation triggered a cooperative binding of Chi-NCs, characterised by a weak binding rate at low Chi-NC doses and a strongly increased binding rate at high Chi-NC concentrations. Our results indicate that the glycocalyx of tumour cells controls the binding and biological activity of nanoparticles. This has to be considered for the design of tumour cell directed nanocarriers to improve the delivery of cytotoxic drugs. Differential nanoparticle binding may also be useful to discriminate tumour cells from healthy cells.


Assuntos
Antipruriginosos/administração & dosagem , Antipruriginosos/farmacocinética , Capsaicina/administração & dosagem , Capsaicina/farmacocinética , Quitosana/química , Glicocálix/metabolismo , Nanocápsulas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Especificidade de Órgãos , Ligação Proteica , Eletricidade Estática , Nanomedicina Teranóstica
15.
Blood Adv ; 2(18): 2347-2357, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30237293

RESUMO

The dynamic change from a globular conformation to an elongated fiber determines the ability of von Willebrand factor (VWF) to trap platelets. Fiber formation is favored by the anchorage of VWF to the endothelial cell surface, and VWF-platelet aggregates on the endothelium contribute to inflammation, infection, and tumor progression. Although P-selectin and ανß3-integrins may bind VWF, their precise role is unclear, and additional binding partners have been proposed. In the present study, we evaluated whether the endothelial glycocalyx anchors VWF fibers to the endothelium. Using microfluidic experiments, we showed that stabilization of the endothelial glycocalyx by chitosan oligosaccharides or overexpression of syndecan-1 (SDC-1) significantly supports the binding of VWF fibers to endothelial cells. Heparinase-mediated degradation or impaired synthesis of heparan sulfate (HS), a major component of the endothelial glycocalyx, reduces VWF fiber-dependent platelet recruitment. Molecular interaction studies using flow cytometry and live-cell fluorescence microscopy provided further evidence that VWF binds to HS linked to SDC-1. In a murine melanoma model, we found that protection of the endothelial glycocalyx through the silencing of heparanase increases the number of VWF fibers attached to the wall of tumor blood vessels. In conclusion, we identified HS chains as a relevant binding factor for VWF fibers at the endothelial cell surface in vitro and in vivo.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , Fator de von Willebrand/metabolismo , Animais , Plaquetas/metabolismo , Feminino , Expressão Gênica , Humanos , Camundongos , Adesividade Plaquetária , Ligação Proteica , Transporte Proteico , Sindecana-1/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-28822718

RESUMO

Tumor progression is associated with aberrant hemostasis, and patients with malignant diseases have an elevated risk of developing thrombosis. A crosstalk among the vascular endothelium, components of the coagulation cascade, and cancer cells transforms the intravascular milieu to a prothrombotic, proinflammatory, and cell-adhesive state. We review the existing evidence on activation of the coagulation system and its implication in genitourinary malignancies and discuss the potential therapeutic benefit of antithrombotic agents. A literature review was performed searching the Medline database and the Cochrane Library for original articles and reviews. A second search identified studies reporting on oncological benefit of anticoagulants in genitourinary cancer. An elevated expression of procoagulatory tissue factor on tumor cells and tumor-derived microparticles seems to stimulate cancer development and progression. Several components of the hemostatic system, including D-dimers, von Willebrand Factor, thrombin, fibrin-/ogen, soluble P-selectin, and prothrombin fragments 1 + 2 were either overexpressed or overactive in genitourinary cancers. Hypercoagulation was in general associated with a poorer prognosis. Experimental models and small trials in humans showed reduced cancer progression after treatment with anticoagulants. Main limitations of these studies were heterogeneous experimental methodology, small patient numbers, and a lack of prospective validation. In conclusion, experimental and clinical evidence suggests procoagulatory activity of genitourinary neoplasms, particularly in prostate, bladder and kidney cancer. This may promote the risk of vascular thrombosis but also metastatic progression. Clinical studies linked elevated biomarkers of hemostasis with poor prognosis in patients with genitourinary cancers. Thus, anticoagulation may have a therapeutic role beyond prevention of thromboembolism.

17.
Cancer Res ; 76(18): 5302-12, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27488527

RESUMO

Tumor cells interact with blood constituents and these interactions promote metastasis. Selectins are vascular receptors facilitating interactions of tumor cells with platelets, leukocytes, and endothelium, but the role of endothelial E-selectin remains unclear. Here we show that E-selectin is a major receptor for monocyte recruitment to tumor cell-activated endothelium. Experimental and spontaneous lung metastasis using murine tumor cells, without E-selectin ligands, were attenuated in E-selectin-deficient mice. Tumor cell-derived CCL2 promoted endothelial activation, resulting in enhanced endothelial E-selectin expression. The recruitment of inflammatory monocytes to metastasizing tumor cells was dependent on the local endothelial activation and the presence of E-selectin. Monocytes promoted transendothelial migration of tumor cells through the induction of E-selectin-dependent endothelial retractions and a subsequent modulation of tight junctions through dephosphorylation of VE-cadherin. Thus, endothelial E-selectin shapes the tumor microenvironment through the recruitment, adhesion, and activation of monocytes that facilitate tumor cell extravasation and thereby metastasis. These findings provide evidence that endothelial E-selectin is a novel factor contributing to endothelial retraction required for efficient lung metastasis. Cancer Res; 76(18); 5302-12. ©2016 AACR.


Assuntos
Selectina E/metabolismo , Monócitos/metabolismo , Invasividade Neoplásica/patologia , Migração Transendotelial e Transepitelial/fisiologia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Citometria de Fluxo , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Mutantes , Reação em Cadeia da Polimerase , Junções Íntimas/metabolismo , Junções Íntimas/patologia
18.
Acta Diabetol ; 53(1): 81-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25900369

RESUMO

AIMS: Nucleoside diphosphate kinase B (NDPKB) is capable of maintaining the cellular nucleotide triphosphate pools. It might therefore supply UTP for the formation of UDP-GlcNAc from glucose. As NDPKB contributes to vascular dysfunction, we speculate that NDPKB might play a role in microangiopathies, such as diabetic retinopathy (DR). Therefore, we investigated the impact of NDPKB on retinal vascular damage using NDPKB(-/-) mice during development of DR and its possible mechanisms. METHODS: Pericyte loss and acellular capillary (AC) formation were assessed in streptozotocin-induced diabetic NDPKB(-/-) and wild-type (WT) mice. Expression of angiopoietin-2 (Ang2) and protein N-acetylglucosamine modification (GlcNAcylation) were assessed by western blot and/or immunofluorescence in the diabetic retinas as well as in endothelial cells depleted of NDPKB by siRNA and stimulated with high glucose. RESULTS: Similar to diabetic WT retinas, non-diabetic NDPKB(-/-) retinas showed a significant decrease in pericyte coverage in comparison with non-diabetic WT retinas. Hyperglycemia further aggravates pericyte loss in diabetic NDPKB(-/-) retinas. AC formation was detected in the diabetic NDPKB(-/-) retinas. Similar to hyperglycemia, NDPKB deficiency induced Ang2 expression and protein GlcNAcylation that were not further altered in the diabetic retinas. In cultured endothelial cells, stimulation with high glucose and NDPKB depletion comparably increased Ang2 expression and protein GlcNAcylation. CONCLUSIONS: Our data identify NDPKB as a protective factor in the retina, which controls Ang2 expression and the hexosamine pathway. NDPKB-deficient mice are a suitable model for studying mechanisms underlying diabetic retinal vascular damage.


Assuntos
Angiopoietina-2/metabolismo , Retinopatia Diabética/genética , Nucleosídeo NM23 Difosfato Quinases/genética , Retina/metabolismo , Vasos Retinianos/metabolismo , Angiopoietina-2/genética , Animais , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Hexosaminas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Pericitos/metabolismo , Pericitos/patologia , Vasos Retinianos/patologia , Regulação para Cima/genética
19.
Blood ; 125(20): 3153-63, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25977583

RESUMO

Tumor-mediated procoagulatory activity leads to venous thromboembolism and supports metastasis in cancer patients. A prerequisite for metastasis formation is the interaction of cancer cells with endothelial cells (ECs) followed by their extravasation. Although it is known that activation of ECs and the release of the procoagulatory protein von Willebrand factor (VWF) is essential for malignancy, the underlying mechanisms remain poorly understood. We hypothesized that VWF fibers in tumor vessels promote tumor-associated thromboembolism and metastasis. Using in vitro settings, mouse models, and human tumor samples, we showed that melanoma cells activate ECs followed by the luminal release of VWF fibers and platelet aggregation in tumor microvessels. Analysis of human blood samples and tumor tissue revealed that a promoted VWF release combined with a local inhibition of proteolytic activity and protein expression of ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type I repeats 13) accounts for this procoagulatory milieu. Blocking endothelial cell activation by the low-molecular-weight heparin tinzaparin was accompanied by a lack of VWF networks and inhibited tumor progression in a transgenic mouse model. Our findings implicate a mechanism wherein tumor-derived vascular endothelial growth factor-A (VEGF-A) promotes tumor progression and angiogenesis. Thus, targeting EC activation envisions new therapeutic strategies attenuating tumor-related angiogenesis and coagulation.


Assuntos
Melanoma/metabolismo , Agregação Plaquetária , Fator de von Willebrand/metabolismo , Proteínas ADAM/sangue , Proteínas ADAM/metabolismo , Proteína ADAMTS13 , Animais , Coagulação Sanguínea , Plaquetas , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/metabolismo , Ativação Enzimática , Fibrinolíticos/farmacologia , Heparina de Baixo Peso Molecular/farmacologia , Humanos , Melanoma/sangue , Melanoma/patologia , Camundongos , Camundongos Transgênicos , Microvasos/metabolismo , Neovascularização Patológica/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-ret/metabolismo , Tinzaparina , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
PLoS One ; 9(2): e89491, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558503

RESUMO

During development and progression of malignant melanoma, an important role has been attributed to alterations of cell-cell adhesions, in particular, to a "cadherin switch" from E- to N-cadherin. We have previously shown that a subtype of melanoma cells express the desmosomal cadherin desmoglein 2 as non-junction-bound cell surface protein in addition to classical cadherins. To study the role of desmoglein 2 in melanoma cells, melanoma lines containing high endogenous amounts of desmoglein 2 were depleted of the protein by RNA interference. Transwell migration and scratch wounding assays showed markedly increased migration upon desmoglein 2 suppression whereas proliferation and viability remained unaltered. In gene expression profiles, desmoglein 2 depletion was associated with overexpression of migration-related genes. Strongest overexpression was found for secretogranin II which has not been reported in melanoma cells before. The bioactive peptide derived from secretogranin II, secretoneurin, is known to exert chemoattractive functions and was demonstrated here to stimulate melanoma cell migration. In summary, we show that desmoglein 2 expression attenuates migration of melanoma cells. The mechanism of desmoglein 2 impaired cell migration is mediated by downregulation of secretogranin II. Loss of desmoglein 2 increases expression of secretogranin II, followed by an enhanced migratory activity of melanoma cells. Our data add a new pathway of regulating melanoma cell migration related to a desmoglein 2-secretogranin II axis.


Assuntos
Movimento Celular/fisiologia , Desmogleína 2/metabolismo , Regulação da Expressão Gênica/fisiologia , Melanoma/fisiopatologia , Bromodesoxiuridina , Linhagem Celular Tumoral , Movimento Celular/genética , Desmogleína 2/deficiência , Impedância Elétrica , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Imuno-Histoquímica , Microscopia de Fluorescência , Interferência de RNA , Radioimunoensaio , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Secretogranina II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA