Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Immunother Cancer ; 11(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963637

RESUMO

BACKGROUND: The metabolism of tryptophan to kynurenines (KYN) by indoleamine-2,3-dioxygenase or tryptophan-2,3-dioxygenase is a key pathway of constitutive and adaptive tumor immune resistance. The immunosuppressive effects of KYN in the tumor microenvironment are predominantly mediated by the aryl hydrocarbon receptor (AhR), a cytosolic transcription factor that broadly suppresses immune cell function. Inhibition of AhR thus offers an antitumor therapy opportunity via restoration of immune system functions. METHODS: The expression of AhR was evaluated in tissue microarrays of head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC) and colorectal cancer (CRC). A structure class of inhibitors that block AhR activation by exogenous and endogenous ligands was identified, and further optimized, using a cellular screening cascade. The antagonistic properties of the selected AhR inhibitor candidate BAY 2416964 were determined using transactivation assays. Nuclear translocation, target engagement and the effect of BAY 2416964 on agonist-induced AhR activation were assessed in human and mouse cancer cells. The immunostimulatory properties on gene and cytokine expression were examined in human immune cell subsets. The in vivo efficacy of BAY 2416964 was tested in the syngeneic ovalbumin-expressing B16F10 melanoma model in mice. Coculture of human H1299 NSCLC cells, primary peripheral blood mononuclear cells and fibroblasts mimicking the human stromal-tumor microenvironment was used to assess the effects of AhR inhibition on human immune cells. Furthermore, tumor spheroids cocultured with tumor antigen-specific MART-1 T cells were used to study the antigen-specific cytotoxic T cell responses. The data were analyzed statistically using linear models. RESULTS: AhR expression was observed in tumor cells and tumor-infiltrating immune cells in HNSCC, NSCLC and CRC. BAY 2416964 potently and selectively inhibited AhR activation induced by either exogenous or endogenous AhR ligands. In vitro, BAY 2416964 restored immune cell function in human and mouse cells, and furthermore enhanced antigen-specific cytotoxic T cell responses and killing of tumor spheroids. In vivo, oral application with BAY 2416964 was well tolerated, induced a proinflammatory tumor microenvironment, and demonstrated antitumor efficacy in a syngeneic cancer model in mice. CONCLUSIONS: These findings identify AhR inhibition as a novel therapeutic approach to overcome immune resistance in various types of cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Dioxigenases , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Triptofano , Receptores de Hidrocarboneto Arílico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Leucócitos Mononucleares/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Cinurenina/metabolismo , Imunoterapia , Fatores Imunológicos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Microambiente Tumoral
2.
Nat Mater ; 22(8): 1022-1029, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349398

RESUMO

In analogy to natural enzymes, an elaborated design of catalytic systems with a specifically tailored local chemical environment could substantially improve reaction kinetics, effectively combat catalyst poisoning effect and boost catalyst lifetime under unfavourable reaction conditions. Here we report a unique design of 'Ni(OH)2-clothed Pt-tetrapods' with an amorphous Ni(OH)2 shell as a water dissociation catalyst and a proton conductive encapsulation layer to isolate the Pt core from bulk alkaline electrolyte while ensuring efficient proton supply to the active Pt sites. This design creates a favourable local chemical environment to result in acidic-like hydrogen evolution reaction kinetics with a lowest Tafel slope of 27 mV per decade and a record-high specific activity and mass activity in alkaline electrolyte. The proton conductive Ni(OH)2 shell can also effectively reject impurity ions and retard the Oswald ripening, endowing a high tolerance to solution impurities and exceptional long-term durability that is difficult to achieve in the naked Pt catalysts. The markedly improved hydrogen evolution reaction activity and durability in an alkaline medium promise an attractive catalyst material for alkaline water electrolysers and renewable chemical fuel generation.

3.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34285105

RESUMO

M2 macrophages promote tumor progression and therapy resistance, whereas proimmunogenic M1 macrophages can contribute to the efficacy of cytostatic and immunotherapeutic strategies. The abundance of M2 macrophages in the immune infiltrate of many cancer types has prompted the search for strategies to target and eliminate this subset. From our prior experiments in syngeneic mouse tumor models, we learned that pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) did not merely result in tumor cell death, but also in the modulation of the tumor immune infiltrate. This included a prominent decrease in the numbers of macrophages as well as an increase in the M1/M2 macrophage ratio. Investigation of the mechanism underlying this finding in primary murine macrophage cultures revealed that M2 macrophages are significantly more sensitive to MEK inhibition-induced cell death than their M1 counterparts. Further analyses showed that the p38 MAPK pathway, which is activated in M1 macrophages only, renders these cells resistant to death by MEK inhibition. In conclusion, the dependency of M2 macrophages on the MEK/extracellular-signal regulated kinase (ERK) pathway empowers MEK inhibitors to selectively eliminate this subset from the tumor microenvironment.


Assuntos
Imunomodulação/imunologia , Macrófagos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Humanos , Transdução de Sinais , Microambiente Tumoral
4.
Cancer Discov ; 11(2): 424-445, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33106316

RESUMO

Recent clinical and preclinical advances have highlighted the existence of a previously hypothesized lymphogenous route of metastasis. However, due to a lack of suitable preclinical modeling tools, its contribution to long-term disease outcome and relevance for therapy remain controversial. Here, we established a genetically engineered mouse model (GEMM) fragment-based tumor model uniquely sustaining a functional network of intratumoral lymphatics that facilitates seeding of fatal peripheral metastases. Multiregimen survival studies and correlative patient data identified primary tumor-derived Angiopoietin-2 (Ang2) as a potent therapeutic target to restrict lymphogenous tumor cell dissemination. Mechanistically, tumor-associated lymphatic endothelial cells (EC), in contrast to blood vascular EC, were found to be critically addicted to the Angiopoietin-Tie pathway. Genetic manipulation experiments in combination with single-cell mapping revealed agonistically acting Ang2-Tie2 signaling as key regulator of lymphatic maintenance. Correspondingly, acute presurgical Ang2 neutralization was sufficient to prolong survival by regressing established intratumoral lymphatics, hence identifying a therapeutic regimen that warrants further clinical evaluation. SIGNIFICANCE: Exploiting multiple mouse tumor models including a unique GEMM-derived allograft system in combination with preclinical therapy designs closely matching the human situation, this study provides fundamental insight into the biology of tumor-associated lymphatic EC and defines an innovative presurgical therapeutic window of migrastatic Ang2 neutralization to restrict lymphogenous metastasis.This article is highlighted in the In This Issue feature, p. 211.


Assuntos
Angiopoietina-2/metabolismo , Neoplasias Pulmonares/patologia , Metástase Linfática/patologia , Receptor TIE-2/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Transdução de Sinais
5.
Sci Rep ; 10(1): 21517, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299018

RESUMO

While for photon radiation hypofractionation has been reported to induce enhanced immunomodulatory effects, little is known about the immunomodulatory potential of carbon ion radiotherapy (CIRT). We thus compared the radio-immunogenic effects of photon and carbon ion irradiation on two murine cancer cell lines of different tumor entities. We first calculated the biological equivalent doses of carbon ions corresponding to photon doses of 1, 3, 5, and 10 Gy of the murine breast cancer cell line EO771 and the OVA-expressing pancreatic cancer cell line PDA30364/OVA by clonogenic survival assays. We compared the potential of photon and carbon ion radiation to induce cell cycle arrest, altered surface expression of immunomodulatory molecules and changes in the susceptibility of cancer cells to cytotoxic T cell (CTL) mediated killing. Irradiation induced a dose-dependent G2/M arrest in both cell lines irrespective from the irradiation source applied. Likewise, surface expression of the immunomodulatory molecules PD-L1, CD73, H2-Db and H2-Kb was increased in a dose-dependent manner. Both radiation modalities enhanced the susceptibility of tumor cells to CTL lysis, which was more pronounced in EO771/Luci/OVA cells than in PDA30364/OVA cells. Overall, compared to photon radiation, the effects of carbon ion radiation appeared to be enhanced at higher dose range for EO771 cells and extenuated at lower dose range for PDA30364/OVA cells. Our data show for the first time that equivalent doses of carbon ion and photon irradiation exert similar immunomodulating effects on the cell lines of both tumor entities, highlighted by an enhanced susceptibility to CTL mediated cytolysis in vitro.


Assuntos
Radioterapia com Íons Pesados/métodos , Imunomodulação/efeitos da radiação , Fótons/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Carbono/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
6.
Cell Stress ; 4(10): 248-251, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024933

RESUMO

The widespread application of immune-checkpoint blockade (ICB) has resulted in unprecedented response rates in patients with immunogenic cancers, such as melanoma and lung cancer. However, sub-groups of patients with these indications do not respond to ICB, and the same applies to patients with other cancer types. Mechanisms of resistance to ICB include low tumor immunogenicity associated with low T cell infiltration ('cold' tumors), suppression of anti-tumor immunity by immunosuppressive cells in the tumor microenvironment (TME), lack of antigen-presentation and immune escape (e.g. by downregulation of MHC-I on tumor cells) as well as oncologic pathways that suppress immune responses. Combination strategies, involving cytostatic drugs, harbor the potential to overcome refractoriness to immunotherapy. However, suppression of immune cell function by cytostatic drugs may limit the efficacy. In our study, we show that combination treatment of targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) and agonist immunostimulatory anti-CD40 antibody (Ab) is particularly suitable in counteracting aforementioned ICB resistance mechanisms (Fig. 1).

7.
Nat Commun ; 11(1): 2176, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358491

RESUMO

Cancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor results in potent synergistic antitumor efficacy. Detailed analysis of the mechanism of action of MEKi shows that this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and T-regulatory cells. The combination of MEK inhibition with agonist anti-CD40 Ab is therefore a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.


Assuntos
Adenocarcinoma/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígenos CD40/agonistas , Carcinoma Ductal Pancreático/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Farmacológicos/metabolismo , Antígenos CD40/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcriptoma/genética
8.
Sci Rep ; 10(1): 686, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959787

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is highlighted by resistance to radiotherapy with the possible exception of hypofractionated irradiation. As single photon doses were reported to increase immunogenicity, we investigated dose-dependent irradiation effects on clonogenic survival, expression of immunologically relevant cell surface molecules and susceptibility to cytotoxic T cell (CTL) mediated killing using a murine PDA cell line. Clonogenicity decreased in a dose-responsive manner showing enhanced radioresistance at single photon doses below 5 Gy. Cell cycle analysis revealed a predominant G2/M arrest, being most pronounced 12 h after irradiation. Polyploidy increased in a dose- and time-dependent manner reaching a maximum frequency 60 h following irradiation with 10 Gy. Irradiation increased surface expression of MHC class I molecules and of immunological checkpoint molecules PDL-1 and CD73, especially at doses ≥ 5 Gy, but not of MHC class II molecules and CXCR4 receptors. Cytotoxicity assays revealed increased CTL lysis of PDA cells at doses ≥ 5 Gy. For the PDA cell line investigated, our data show for the first time that single photon doses ≥ 5 Gy effectively inhibit colony formation and induce a G2/M cell cycle arrest. Furthermore, expression levels of immunomodulatory cell surface molecules became altered possibly enhancing the susceptibility of tumour cells to CTL lysis.


Assuntos
5'-Nucleotidase/metabolismo , Antígeno B7-H1/metabolismo , Carcinoma Ductal Pancreático/imunologia , Neoplasias Pancreáticas/imunologia , Animais , Carcinoma Ductal Pancreático/radioterapia , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Clonais/citologia , Células Clonais/metabolismo , Células Clonais/efeitos da radiação , Relação Dose-Resposta à Radiação , Camundongos , Neoplasias Pancreáticas/radioterapia , Tolerância a Radiação , Fatores de Tempo
9.
Cancer Gene Ther ; 26(11-12): 411-418, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30622322

RESUMO

The concept of using viruses to treat cancer has now shown proof of concept in several recent clinical trials, leading to the first FDA approval of virotherapy for melanoma last year. Vesicular stomatitis virus (VSV) is a promising oncolytic virus that has inhibitory effects on a number of cancer types including non-small cell lung cancer. One of the major mechanisms of resistance to VSV infection is the type I interferon (IFN) response, leading to the development of VSV expressing IFNß which will lead to resistance of viral replication in normal cells which have intact IFN signaling but allow replication in cancer cells with defective IFNß signaling. However, some cancer cells have intact or partially intact IFN signaling pathways leading to resistance to virotherapy. Here we utilized JAK/STAT inhibitor, ruxolitinib, in combination with VSV-IFNß to see if inhibition of JAK/STAT signaling will enhance VSV-IFNß therapy for lung cancer. We used five human and two murine NSCLC cell lines in vitro, and the combination treatment was assayed for cytotoxicity. We performed western blots on treated cells to see the effects of ruxolitinib on JAK/STAT signaling and PDL-1 expression in treated cells. Finally, the combination of VSV-IFNß and ruxolitinib was tested in an immune competent murine model of NSCLC. Ruxolitinib enhanced virotherapy in resistant and sensitive NSCLC cells. The addition of ruxolitinib inhibited STAT1 phosphorylation and to a lesser extent STAT3 phosphorylation. Ruxolitinib treatment prevented NSCLC cells from enhancing PDL-1 expression in response to virotherapy. Combination ruxolitinib and VSV-IFNß therapy resulted in a trend toward improved survival of mice without substantially effecting PDL-1 levels or levels of immune infiltration into the tumor. These results support further clinical evaluation of the combination of JAK/STAT inhibition with virotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidores de Janus Quinases/farmacologia , Neoplasias Pulmonares/metabolismo , Terapia Viral Oncolítica , Pirazóis/farmacologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Nitrilas , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Pirimidinas , Transdução de Sinais , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncoimmunology ; 7(7): e1445457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900058

RESUMO

Despite melanoma immunogenicity and remarkable therapeutic effects of negative immune checkpoint inhibitors, a significant fraction of patients does not respond to current treatments. This could be due to limitations in tumor immunogenicity and profound immunosuppression in the melanoma microenvironment. Moreover, insufficient tumor antigen processing and presentation by dendritic cells (DC) may hamper the development of tumor-specific T cells. Using two genetically engineered mouse melanoma models (RET and BRAFV600E transgenic mice), in which checkpoint inhibitor therapy alone is not efficacious, we performed proof-of-concept studies with an improved, multivalent DC vaccination strategy based on our recently developed genetic mRNA cancer vaccines. The in vivo expression of multiple chimeric MHC class I receptors allows a simultaneous presentation of several melanoma-associated shared antigens tyrosinase related protein (TRP)-1, tyrosinase, human glycoprotein 100 and TRP-2. The DC vaccine induced a significantly improved survival in both transgenic mouse models. Vaccinated melanoma-bearing mice displayed an increased CD8 T cell reactivity indicated by a higher IFN-γ production and an upregulation of activation marker expression along with an attenuated immunosuppressive pattern of myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg). The combination of DC vaccination with ultra-low doses of paclitaxel or anti-PD-1 antibodies resulted in further prolongation of mouse survival associated with a stronger reduction of MDSC and Treg immunosuppressive phenotype. Our data suggest that an improved multivalent DC vaccine based on shared tumor antigens induces potent anti-tumor effects and could be combined with checkpoint inhibitors or targeting immunosuppressive cells to further improve their therapeutic efficiency.

11.
Eur J Pharm Biopharm ; 80(1): 156-63, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21945271

RESUMO

For locally acting drugs, an extended residence time in the nasal cavity is desirable and related to a prolonged effect. We sought to develop a model for comparative determination of intranasal pharmacokinetics. We embedded human respiratory tissue into a solid matrix and coated the surface with artificial nasal fluid. Nasal spray suspensions of fluticasone propionate (FP) and budesonide (Bud) as well as a solution of azelastine hydrochloride (AZ) were applied onto the surface and removed after 30 min to simulate mucociliary clearance. As exemplary anti-inflammatory measure, we evaluated the inhibition of IL-8 release from epithelial cells. FP and Bud were initially bound to the same extent to the tissue gel while AZ displayed a more 4-fold higher binding than FP or Bud. After equilibrium with plasma, approximately 5-fold higher tissue concentrations of AZ compared to FP and 77-fold higher levels in relation to Bud were determined. This tissue retention revealed an excellent correlation with the volume of distribution of the respective drugs (r=0.9999, p ≤ 0.05). The inhibitory effect of FP on IL-8 release was approximately 5-fold more pronounced compared to AZ. The present model realistically mirrors conditions in vivo where solubility and tissue absorption of intranasally applied drugs compete with mucociliary clearance mechanisms.


Assuntos
Antialérgicos/administração & dosagem , Antialérgicos/farmacocinética , Depuração Mucociliar , Líquido da Lavagem Nasal/química , Sprays Nasais , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Administração por Inalação , Administração Intranasal/métodos , Aerossóis/administração & dosagem , Aerossóis/farmacocinética , Androstadienos/administração & dosagem , Androstadienos/farmacocinética , Anti-Inflamatórios/farmacocinética , Budesonida/administração & dosagem , Budesonida/farmacocinética , Linhagem Celular Tumoral , Preparações de Ação Retardada , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fluticasona , Glucocorticoides/metabolismo , Antagonistas dos Receptores Histamínicos/metabolismo , Humanos , Interleucina-8/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Ftalazinas/administração & dosagem , Ftalazinas/farmacocinética , Rinite Alérgica Sazonal/tratamento farmacológico , Rinite Alérgica Sazonal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA