Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Health Phys ; 104(4): 379-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23439141

RESUMO

As MOSFET (Metal Oxide Semiconductor Field Effect Transistor) detectors allow dose measurements in real time, the interest in these dosimeters is growing. The aim of this study was to investigate the dosimetric properties of commercially available TN-502RD-H MOSFET silicon detectors (Best Medical Canada, Ottawa, Canada) in order to use them for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure. Reproducibility of the measurements, dose rate dependence, and dose response of the MOSFET detectors have been studied with a Co source. Influence of the dose rate, frequency, and pulse duration on MOSFET responses has also been studied in pulsed x-ray fields. Finally, in order to validate the integrated dose given by MOSFET detectors, MOSFETs and TLDs (LiF:Mg,Cu,P) were fixed on an Alderson-Rando phantom in the conditions of an interventional neuroradiology procedure, and their responses have been compared. The results of this study show the suitability of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of accident, provided a well-corrected energy dependence, a pulse duration equal to or higher than 10 ms, and an optimized contact between the detector and the skin of the patient are achieved.


Assuntos
Fracionamento da Dose de Radiação , Radiologia Intervencionista/instrumentação , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Humanos , Neurorradiografia , Imagens de Fantasmas , Radiologia Intervencionista/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
2.
J Biomed Mater Res ; 59(4): 618-31, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11774323

RESUMO

Graft copolymers were designed that could spontaneously bind to biological surfaces and block subsequent recognition and adhesion at those surfaces. Phenylboronic acid (PBA) moieties in the polymer backbone provided binding to surfaces, forming reversible covalent complexes with cis-diols found in many biological molecules. Pendant poly(ethylene glycol) (PEG) side chains sterically protected those surfaces from subsequent interactions with other proteins and cells. The PEG and PBA grafting ratios on these poly-L-lysine-graft-(PEG;PBA) copolymers [PLL-g-(PEG;PBA)] were varied, and the polymers were tested in models relevant to undesirable wound-healing responses such as peritoneal adhesion formation and posterior capsule opacification. PLL-g-(PEG;PBA) polymers spontaneously coated tissue culture polystyrene and completely blocked rabbit lens epithelial cell adhesion to the surface over a wide range of PEG grafting ratios. PLL-g-(PEG;PBA)s with optimal grafting ratios were able to coat adsorbed serum proteins or extracellular matrices and block cell spreading on the surfaces at 4 h, although the effect was lost within 24 h. The polymer also enhanced the efficacy of surgical lysis of peritoneal adhesions in rats. The reversible covalent complexes formed by the PBA moieties on the copolymer backbone were more effective at binding biological surfaces than electrostatic interactions formed via a copolymer lacking the PBA moieties, that is, PLL-g-PEG.


Assuntos
Ácidos Borônicos/química , Adesão Celular , Polietilenoglicóis/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA