Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 481(12): 805-821, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38829003

RESUMO

Aflatoxins (AFs), potent foodborne carcinogens produced by Aspergillus fungi, pose significant health risks worldwide and present challenges to food safety and productivity in the food chain. Novel strategies for disrupting AF production, cultivating resilient crops, and detecting contaminated food are urgently needed. Understanding the regulatory mechanisms of AF production is pivotal for targeted interventions to mitigate toxin accumulation in food and feed. The gene cluster responsible for AF biosynthesis encodes biosynthetic enzymes and pathway-specific regulators, notably AflR and AflS. While AflR, a DNA-binding protein, activates gene transcription within the cluster, AflS enhances AF production through mechanisms that are not fully understood. In this study, we developed protocols to purify recombinant AflR and AflS proteins and utilized multiple assays to characterize their interactions with DNA. Our biophysical analysis indicated that AflR and AflS form a complex. AflS exhibited no DNA-binding capability on its own but unexpectedly reduced the DNA-binding affinity of AflR. Additionally, we found that AflR achieves its binding specificity through a mechanism in which either two copies of AflR or its complex with AflS bind to target sites on DNA in a highly cooperative manner. The estimated values of the interaction parameters of AflR, AflS and DNA target sites constitute a fundamental framework against which the function and mechanisms of other AF biosynthesis regulators can be compared.


Assuntos
Aflatoxinas , Proteínas Fúngicas , Aflatoxinas/biossíntese , Aflatoxinas/metabolismo , Aflatoxinas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Cinética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ligação Proteica , DNA/metabolismo , DNA/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Aspergillus/metabolismo , Aspergillus/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891956

RESUMO

Regulatory cystathionine ß-synthase (CBS) domains are widespread in proteins; however, difficulty in structure determination prevents a comprehensive understanding of the underlying regulation mechanism. Tetrameric microbial inorganic pyrophosphatase containing such domains (CBS-PPase) is allosterically inhibited by AMP and ADP and activated by ATP and cell alarmones diadenosine polyphosphates. Each CBS-PPase subunit contains a pair of CBS domains but binds cooperatively to only one molecule of the mono-adenosine derivatives. We used site-directed mutagenesis of Desulfitobacterium hafniense CBS-PPase to identify the key elements determining the direction of the effect (activation or inhibition) and the "half-of-the-sites" ligand binding stoichiometry. Seven amino acid residues were selected in the CBS1 domain, based on the available X-ray structure of the regulatory domains, and substituted by alanine and other residues. The interaction of 11 CBS-PPase variants with the regulating ligands was characterized by activity measurements and isothermal titration calorimetry. Lys100 replacement reversed the effect of ADP from inhibition to activation, whereas Lys95 and Gly118 replacements made ADP an activator at low concentrations but an inhibitor at high concentrations. Replacement of these residues for alanine increased the stoichiometry of mono-adenosine phosphate binding by twofold. These findings identified several key protein residues and suggested a "two non-interacting pairs of interacting regulatory sites" concept in CBS-PPase regulation.


Assuntos
Cistationina beta-Sintase , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/química , Cistationina beta-Sintase/genética , Mutação , Ligação Proteica , Mutagênese Sítio-Dirigida , Nucleotídeos de Adenina/metabolismo , Nucleotídeos de Adenina/química , Domínios Proteicos , Pirofosfatases/metabolismo , Pirofosfatases/química , Pirofosfatases/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Pirofosfatase Inorgânica/metabolismo , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/genética , Modelos Moleculares , Sítios de Ligação
3.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138989

RESUMO

Regulatory adenine nucleotide-binding cystathionine ß-synthase (CBS) domains are widespread in proteins; however, information on the mechanism of their modulating effects on protein function is scarce. The difficulty in obtaining structural data for such proteins is ascribed to their unusual flexibility and propensity to form higher-order oligomeric structures. In this study, we deleted the most movable domain from the catalytic part of a CBS domain-containing bacterial inorganic pyrophosphatase (CBS-PPase) and characterized the deletion variant both structurally and functionally. The truncated CBS-PPase was inactive but retained the homotetrameric structure of the full-size enzyme and its ability to bind a fluorescent AMP analog (inhibitor) and diadenosine tetraphosphate (activator) with the same or greater affinity. The deletion stabilized the protein structure against thermal unfolding, suggesting that the deleted domain destabilizes the structure in the full-size protein. A "linear" 3D structure with an unusual type of domain swapping predicted for the truncated CBS-PPase by Alphafold2 was confirmed by single-particle electron microscopy. The results suggest a dual role for the CBS domains in CBS-PPase regulation: they allow for enzyme tetramerization, which impedes the motion of one catalytic domain, and bind adenine nucleotides to mitigate or aggravate this effect.


Assuntos
Cistationina beta-Sintase , Pirofosfatases , Pirofosfatases/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Domínio Catalítico , Proteínas de Bactérias/metabolismo , Nucleotídeos
4.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575984

RESUMO

Membrane-bound inorganic pyrophosphatase (mPPase) resembles the F-ATPase in catalyzing polyphosphate-energized H+ and Na+ transport across lipid membranes, but differs structurally and mechanistically. Homodimeric mPPase likely uses a "direct coupling" mechanism, in which the proton generated from the water nucleophile at the entrance to the ion conductance channel is transported across the membrane or triggers Na+ transport. The structural aspects of this mechanism, including subunit cooperation, are still poorly understood. Using a refined enzyme assay, we examined the inhibition of K+-dependent H+-transporting mPPase from Desulfitobacterium hafniensee by three non-hydrolyzable PPi analogs (imidodiphosphate and C-substituted bisphosphonates). The kinetic data demonstrated negative cooperativity in inhibitor binding to two active sites, and reduced active site performance when the inhibitor or substrate occupied the other active site. The nonequivalence of active sites in PPi hydrolysis in terms of the Michaelis constant vanished at a low (0.1 mM) concentration of Mg2+ (essential cofactor). The replacement of K+, the second metal cofactor, by Na+ increased the substrate and inhibitor binding cooperativity. The detergent-solubilized form of mPPase exhibited similar active site nonequivalence in PPi hydrolysis. Our findings support the notion that the mPPase mechanism combines Mitchell's direct coupling with conformational coupling to catalyze cation transport across the membrane.


Assuntos
Catálise , Difosfatos/química , Pirofosfatase Inorgânica/química , Canais Iônicos/química , Membrana Celular/enzimologia , Dimerização , Hidrólise , Canais Iônicos/genética , Transporte de Íons/genética , Cinética , Potássio/química , Prótons , Pirofosfatases
5.
Biochim Biophys Acta Gen Subj ; 1865(1): 129762, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33053413

RESUMO

BACKGROUND: Previous studies have demonstrated the formation of stable complexes between inorganic pyrophosphatase (PPase) and three other Escherichia coli enzymes - cupin-type phosphoglucose isomerase (cPGI), class I fructose-1,6-bisphosphate aldolase (FbaB) and l-glutamate decarboxylase (GadA). METHODS: Here, we determined by activity measurements how complex formation between these enzymes affects their activities and oligomeric structure. RESULTS: cPGI activity was modulated by all partner proteins, but none was reciprocally affected by cPGI. PPase activity was down-regulated upon complex formation, whereas all other enzymes were up-regulated. For cPGI, the activation was partially counteracted by a shift in dimer ⇆ hexamer equilibrium to inactive hexamer. Complex stoichiometry appeared to be 1:1 in most cases, but FbaB formed both 1:1 and 1:2 complexes with both GadA and PPase, FbaB activation was only observed in the 1:2 complexes. FbaB and GadA induced functional asymmetry (negative kinetic cooperativity) in hexameric PPase, presumably by favoring partial dissociation to trimers. CONCLUSIONS: These four enzymes form all six possible binary complexes in vitro, resulting in modulated activity of at least one of the constituent enzymes. In five complexes, the effects on activity were unidirectional, and in one complex (FbaB⋅PPase), the effects were reciprocal. The effects of potential physiological significance include inhibition of PPase by FbaB and GadA and activation of FbaB and cPGI by PPase. Together, they provide a mechanism for feedback regulation of FbaB and GadA biosynthesis. GENERAL SIGNIFICANCE: These findings indicate the complexity of functionally significant interactions between cellular enzymes, which classical enzymology treats as individual entities, and demonstrate their moonlighting activities as regulators.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Glutamato Descarboxilase/metabolismo , Pirofosfatase Inorgânica/metabolismo , Proteínas de Membrana/metabolismo , Escherichia coli/química , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/química , Frutose-Bifosfato Aldolase/química , Glucose-6-Fosfato Isomerase/química , Glutamato Descarboxilase/química , Humanos , Pirofosfatase Inorgânica/química , Cinética , Proteínas de Membrana/química , Multimerização Proteica
6.
Arch Biochem Biophys ; 692: 108537, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32810477

RESUMO

A quarter of prokaryotic Family II inorganic pyrophosphatases (PPases) contain a regulatory insert comprised of two cystathionine ß-synthase (CBS) domains and one DRTGG domain in addition to the two catalytic domains that form canonical Family II PPases. The CBS domain-containing PPases (CBS-PPases) are allosterically activated or inhibited by adenine nucleotides that cooperatively bind to the CBS domains. Here we use chemical cross-linking and analytical ultracentrifugation to show that CBS-PPases from Desulfitobacterium hafniense and four other bacterial species are active as 200-250-kDa homotetramers, which seems unprecedented among the four PPase families. The tetrameric structure is stabilized by Co2+, the essential cofactor, pyrophosphate, the substrate, and adenine nucleotides, including diadenosine tetraphosphate. The deletion variants of dhPPase containing only catalytic or regulatory domains are dimeric. Co2+ depletion by incubation with EDTA converts CBS-PPase into inactive tetrameric and dimeric forms. Dissociation of tetrameric CBS-PPase and its catalytic part by dilution renders them inactive. The structure of CBS-PPase tetramer was modelled from the structures of dimeric catalytic and regulatory parts. These findings signify the role of the unique oligomeric structure of CBS-PPase in its multifaced regulation.


Assuntos
Sequência de Aminoácidos , Proteínas de Bactérias , Desulfitobacterium , Pirofosfatase Inorgânica , Mutagênese , Deleção de Sequência , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Desulfitobacterium/enzimologia , Desulfitobacterium/genética , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/genética , Ligantes
7.
Biochim Biophys Acta Gen Subj ; 1864(7): 129601, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32179131

RESUMO

BACKGROUND: Escherichia coli cells contain a homolog of presumed 5-keto-4-deoxyuronate isomerase (KduI) from pectin-degrading soil bacteria, but the catalytic activity of the E. coli protein (o-KduI) was never demonstrated. METHODS: The known three-dimensional structure of E. coli o-KduI was compared with the available structures of sugar-converting enzymes. Based on the results of this analysis, sugar isomerization activity of recombinant o-KduI was tested against a panel of D-sugars and their derivatives. RESULTS: The three-dimensional structure of o-KduI exhibits a close similarity with Pyrococcus furiosus cupin-type phosphoglucose isomerase. In accordance with this similarity, o-KduI was found to catalyze interconversion of glucose-6-phosphate and fructose-6-phosphate and, less efficiently, conversion of glucuronate to fructuronate. o-KduI was hexameric in crystals but represented a mixture of inactive hexamers and active dimers in solution and contained a tightly bound Zn2+ ion. Dilution, substrate binding and Zn2+ removal shifted the hexamer ⇆ dimer equilibrium to the dimers. CONCLUSIONS: Our findings identify o-KduI as a novel phosphosugar isomerase in E. coli, whose activity may be regulated by changes in oligomeric structure. GENERAL SIGNIFICANCE: More than 5700 protein sequences are annotated as KduI, but their enzymatic activity has not been directly demonstrated. E. coli o-KduI is the first characterized member of this group, and its enzymatic activity was found to be different from the predicted activity.


Assuntos
Aldose-Cetose Isomerases/genética , Glucose-6-Fosfato Isomerase/genética , Conformação Proteica , Aldose-Cetose Isomerases/ultraestrutura , Sequência de Aminoácidos/genética , Metabolismo dos Carboidratos/genética , Catálise , Cristalografia por Raios X , Escherichia coli/enzimologia , Frutosefosfatos/genética , Glucose-6-Fosfato/genética , Glucose-6-Fosfato Isomerase/ultraestrutura , Pyrococcus furiosus/enzimologia
8.
ACS Omega ; 4(13): 15549-15559, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31572856

RESUMO

Inorganic pyrophosphatase containing regulatory cystathionine ß-synthase (CBS) domains (CBS-PPase) is inhibited by adenosine monophosphate (AMP) and adenosine diphosphate and activated by adenosine triphosphate (ATP) and diadenosine polyphosphates; mononucleotide binding to CBS domains and substrate binding to catalytic domains are characterized by positive cooperativity. This behavior implies three pathways for regulatory signal transduction - between regulatory and active sites, between two active sites, and between two regulatory sites. Bioinformatics analysis pinpointed six charged or polar amino acid residues of Desulfitobacterium hafniense CBS-PPase as potentially important for enzyme regulation. Twelve mutant enzyme forms were produced, and their kinetics of pyrophosphate hydrolysis was measured in wide concentration ranges of the substrate and various adenine nucleotides. The parameters derived from this analysis included catalytic activity, Michaelis constants for two active sites, AMP-, ATP-, and diadenosine tetraphosphate-binding constants for two regulatory sites, and the degree of activation/inhibition for each nucleotide. Replacements of arginine 295 and asparagine 312 by alanine converted ATP from an activator to an inhibitor and markedly affected practically all the above parameters, indicating involvement of these residues in all the three regulatory signaling pathways. Replacements of asparagine 312 and arginine 334 abolished or reversed kinetic cooperativity in the absence of nucleotides but conferred it in the presence of diadenosine tetraphosphate, without effects on nucleotide-binding parameters. Modeling and molecular dynamics simulations revealed destabilization of the subunit interface as a result of asparagine 312 and arginine 334 replacements by alanine, explaining abolishment of kinetic cooperativity. These findings identify residues 295, 312, and 334 as crucial for CBS-PPase regulation via CBS domains.

9.
Biochem Biophys Res Commun ; 517(2): 266-271, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31349973

RESUMO

Bacterial family II pyrophosphatases (PPases) are homodimeric enzymes, with the active site located between two catalytic domains. Some family II PPases additionally contain regulatory cystathionine ß-synthase (CBS) domains and exhibit positive kinetic cooperativity, which is lost upon CBS domain removal. We report here that CBS domain-deficient family II PPases of Bacillus subtilis and Streptococcus gordonii also exhibit positive kinetic cooperativity, manifested as an up to a five-fold difference in the Michaelis constants for two active sites. An Asn79Ser replacement in S. gordonii PPase preserved its dimeric structure but abolished cooperativity. The results of our study indicated that kinetic cooperativity is an inherent property of all family II PPase types, is not induced by CBS domains, and is sensitive to minor structural changes. These findings may have inferences for other CBS-proteins, which include important enzymes and membrane transporters associated with hereditary diseases.


Assuntos
Bacillus subtilis/enzimologia , Pirofosfatase Inorgânica/metabolismo , Streptococcus gordonii/enzimologia , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Domínio Catalítico , Cistationina beta-Sintase/química , Cistationina beta-Sintase/metabolismo , Pirofosfatase Inorgânica/química , Cinética , Magnésio/metabolismo , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Streptococcus gordonii/química , Streptococcus gordonii/metabolismo
10.
Biochim Biophys Acta Gen Subj ; 1863(8): 1263-1269, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31103750

RESUMO

BACKGROUND: Regulatory cystathionine ß-synthase (CBS) domains are ubiquitous in proteins, yet their mechanism of regulation remains largely obscure. Inorganic pyrophosphatase which contains regulatory CBS domains as internal inhibitors (CBS-PPase) is activated by ATP and inhibited by AMP and ADP; nucleotide binding to CBS domains and substrate binding to catalytic domains demonstrate positive co-operativity. METHODS: Here, we explore the ability of an AMP analogue (cAMP) and four compounds that mimic the constituent parts of the AMP molecule (adenine, adenosine, phosphate, and fructose-1-phosphate) to bind and alter the activity of CBS-PPase from the bacterium Desulfitobacterium hafniense. RESULTS: Adenine, adenosine and cAMP activated CBS-PPase several-fold whereas fructose-1-phosphate inhibited it. Adenine and adenosine binding to dimeric CBS-PPase exhibited high positive co-operativity and markedly increased substrate binding co-operativity. Phosphate bound to CBS-PPase competitively with respect to a fluorescent AMP analogue. CONCLUSIONS: Protein interactions with the adenine moiety of AMP induce partial release of the internal inhibition and determine nucleotide-binding co-operativity, whereas interactions with the phosphate group potentiate the internal inhibition and decrease active-site co-operativity. The ribose moiety appears to enhance the activation effect of adenine and suppress its contribution to both types of co-operativity. GENERAL SIGNIFICANCE: Our findings demonstrate for the first time that regulation of a CBS-protein (inhibition or activation) is determined by a balance of its interactions with different chemical groups of the nucleotide and can be reversed by their modification. Differential regulation by nucleotides is not uncommon among CBS-proteins, and our findings may thus have a wider significance.


Assuntos
Nucleotídeos de Adenina/química , Cistationina beta-Sintase/metabolismo , Pirofosfatases/metabolismo , Cistationina beta-Sintase/química , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Ligantes , Ligação Proteica , Pirofosfatases/química
11.
Arch Biochem Biophys ; 662: 40-48, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30502330

RESUMO

Inorganic pyrophosphatase containing a pair of regulatory CBS domains (CBS-PPase1) is allosterically inhibited by AMP and ADP and activated by ATP and diadenosine polyphosphates. Mononucleotide binding to CBS domains and substrate binding to catalytic domains are characterized by positive co-operativity. Bioinformatics analysis pinpointed a conserved arginine residue at the interface of the regulatory and catalytic domains in bacterial CBS-PPases as potentially involved in enzyme regulation. The importance of this residue was assessed by site-directed mutagenesis using the CBS-PPase from Desulfitobacterium hafniense (dhPPase) as a model. The mutants R276A, R276K and R276E were constructed and purified, and the impact of the respective mutation on catalysis, nucleotide binding and regulation was analysed. Overall, the effects decreased in the following order R276A > R276E > R276K. The variants retained ≥50% catalytic efficiency but exhibited reduced kinetic co-operativity or even its inversion (R276A). Negative co-operativity was retained in the R276A variant in the presence of mononucleotides but was reversed by diadenosine tetraphosphate. Positive nucleotide-binding co-operativity was retained in all variants but the R276A and R276E variants exhibited a markedly reduced affinity to AMP and ADP and greater residual activity at their saturating concentrations. The R276A substitution abolished activation by ATP and diadenosine tetraphosphate, while preserving the ability to bind them. The results suggest that the H-bond formed by the Arg276 sidechain is essential for signal transduction between the regulatory and catalytic domains within one subunit and between the catalytic but not regulatory domains of different subunits.


Assuntos
Arginina/metabolismo , Cistationina beta-Sintase/metabolismo , Pirofosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Catálise , Cistationina beta-Sintase/química , Fosfatos de Dinucleosídeos/metabolismo , Transdução de Sinais
12.
Biochem Biophys Res Commun ; 499(3): 600-604, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29601812

RESUMO

Bacterial Na+-transporting rhodopsins convert solar energy into transmembrane ion potential difference. Typically, they are strictly specific for Na+, but some can additionally transport H+. To determine the structural basis of cation promiscuity in Na+-rhodopsins, we compared their primary structures and found a single position that harbors a cysteine in strictly specific Na+-rhodopsins and a serine in the promiscuous Krokinobacter eikastus Na+-rhodopsin (Kr2). A Cys253Ser variant of the strictly specific Dokdonia sp. PRO95 Na+-rhodopsin (NaR) was indeed found to transport both Na+ and H+ in a light-dependent manner when expressed in retinal-producing Escherichia coli cells. The dual specificity of the NaR variant was confirmed by analysis of its photocycle, which revealed an acceleration of the cation-capture step by comparison with the wild-type NaR in a Na+-deficient medium. The structural basis for the dependence of the Na+/H+ specificity in Na+-rhodopsin on residue 253 remains to be determined.


Assuntos
Bactérias/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Sódio/metabolismo , Transporte Biológico , Relação Estrutura-Atividade
13.
FEBS Lett ; 591(20): 3225-3234, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28986979

RESUMO

Inorganic pyrophosphatases (PPases) convert pyrophosphate (PPi ) to phosphate and are present in all cell types. Soluble PPases belong to three nonhomologous families, of which Family II is found in approximately a quarter of prokaryotic organisms, often pathogenic ones. Each subunit of dimeric canonical Family II PPases is formed by two domains connected by a flexible linker, with the active site located between the domains. These enzymes require both magnesium and a transition metal ion (manganese or cobalt) for maximal activity and are the most active (kcat ≈ 104 s-1 ) among all PPase types. Catalysis by Family II PPases requires four metal ions per substrate molecule, three of which form a unique trimetal center that coordinates the nucleophilic water and converts it to a reactive hydroxide ion. A quarter of Family II PPases contain an autoinhibitory regulatory insert formed by two cystathionine ß-synthase (CBS) domains and one DRTGG domain. Adenine nucleotide binding either activates or inhibits the CBS domain-containing PPases, thereby tuning their activity and, hence, PPi levels, in response to changes in cell energy status (ATP/ADP ratio).


Assuntos
Bactérias/enzimologia , Células Eucarióticas/enzimologia , Pirofosfatase Inorgânica/química , Magnésio/química , Subunidades Proteicas/química , Nucleotídeos de Adenina/química , Nucleotídeos de Adenina/metabolismo , Bactérias/genética , Biocatálise , Domínio Catalítico , Cobalto/química , Cobalto/metabolismo , Células Eucarióticas/citologia , Expressão Gênica , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Magnésio/metabolismo , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
14.
Biochem J ; 473(14): 2097-107, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208172

RESUMO

Many prokaryotic soluble PPases (pyrophosphatases) contain a pair of regulatory adenine nucleotide-binding CBS (cystathionine ß-synthase) domains that act as 'internal inhibitors' whose effect is modulated by nucleotide binding. Although such regulatory domains are found in important enzymes and transporters, the underlying regulatory mechanism has only begun to come into focus. We reported previously that CBS domains bind nucleotides co-operatively and induce positive kinetic co-operativity (non-Michaelian behaviour) in CBS-PPases (CBS domain-containing PPases). In the present study, we demonstrate that a homodimeric ehPPase (Ethanoligenens harbinense PPase) containing an inherent mutation in an otherwise conserved asparagine residue in a loop near the active site exhibits non-co-operative hydrolysis kinetics. A similar N312S substitution in 'co-operative' dhPPase (Desulfitobacterium hafniense PPase) abolished kinetic co-operativity while causing only minor effects on nucleotide-binding affinity and co-operativity. However, the substitution reversed the effect of diadenosine tetraphosphate, abolishing kinetic co-operativity in wild-type dhPPase, but restoring it in the variant dhPPase. A reverse serine-to-asparagine replacement restored kinetic co-operativity in ehPPase. Molecular dynamics simulations revealed that the asparagine substitution resulted in a change in the hydrogen-bonding pattern around the asparagine residue and the subunit interface, allowing greater flexibility at the subunit interface without a marked effect on the overall structure. These findings identify this asparagine residue as lying at the 'crossroads' of information paths connecting catalytic and regulatory domains within a subunit and catalytic sites between subunits.


Assuntos
Asparagina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cistationina beta-Sintase/química , Nucleotídeos/metabolismo , Pirofosfatases/química , Pirofosfatases/metabolismo , Asparagina/química , Proteínas de Bactérias/genética , Bactérias Gram-Positivas/enzimologia , Cinética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Pirofosfatases/genética , Relação Estrutura-Atividade
15.
J Biol Chem ; 290(46): 27594-603, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26400082

RESUMO

Among numerous proteins containing pairs of regulatory cystathionine ß-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P(1),P(n)-diadenosine 5'-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ~10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Cistationina beta-Sintase/química , Fosfatos de Dinucleosídeos/química , Pirofosfatases/química , Nucleotídeos de Adenina/química , Sequência de Aminoácidos , Clostridium perfringens/enzimologia , Cinética , Dados de Sequência Molecular , Moorella/enzimologia , Ligação Proteica , Estrutura Terciária de Proteína
16.
J Biol Chem ; 289(33): 22865-22876, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24986864

RESUMO

Regulated family II pyrophosphatases (CBS-PPases) contain a nucleotide-binding insert comprising a pair of cystathionine ß-synthase (CBS) domains, termed a Bateman module. By binding with high affinity to the CBS domains, AMP and ADP usually inhibit the enzyme, whereas ATP activates it. Here, we demonstrate that AMP, ADP, and ATP bind in a positively cooperative manner to CBS-PPases from four bacteria: Desulfitobacterium hafniense, Clostridium novyi, Clostridium perfringens, and Eggerthella lenta. Enzyme interaction with substrate as characterized by the Michaelis constant (Km) also exhibited positive catalytic cooperativity that decreased in magnitude upon nucleotide binding. The degree of both types of cooperativity increased with increasing concentration of the cofactor Mg(2+) except for the C. novyi PPase where Mg(2+) produced the opposite effect on kinetic cooperativity. Further exceptions from these general rules were ADP binding to C. novyi PPase and AMP binding to E. lenta PPase, neither of which had any effect on activity. A genetically engineered deletion variant of D. hafniense PPase lacking the regulatory insert was fully active but differed from the wild-type enzyme in that it was insensitive to nucleotides and bound substrate non-cooperatively and with a smaller Km value. These results indicate that the regulatory insert acts as an internal inhibitor and confers dual positive cooperativity to CBS domain-containing PPases, making them highly sensitive regulators of the PPi level in response to the changes in cell energy status that control adenine nucleotide distribution. These regulatory features may be common among other CBS domain-containing proteins.


Assuntos
Proteínas de Bactérias/química , Cistationina beta-Sintase/química , Bactérias Gram-Positivas/enzimologia , Pirofosfatases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Bactérias Gram-Positivas/genética , Estrutura Terciária de Proteína , Pirofosfatases/genética , Pirofosfatases/metabolismo
17.
ACS Chem Biol ; 6(11): 1156-63, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21958115

RESUMO

Regulatory CBS (cystathionine ß-synthase) domains exist as two or four tandem copies in thousands of cytosolic and membrane-associated proteins from all kingdoms of life. Mutations in the CBS domains of human enzymes and membrane channels are associated with an array of hereditary diseases. Four CBS domains encoded within a single polypeptide or two identical polypeptides (each having a pair of CBS domains at the subunit interface) form a highly conserved disk-like structure. CBS domains act as autoinhibitory regulatory units in some proteins and activate or further inhibit protein function upon binding to adenosine nucleotides (AMP, ADP, ATP, S-adenosyl methionine, NAD, diadenosine polyphosphates). As a result of the differential effects of the nucleotides, CBS domain-containing proteins can sense cell energy levels. Significant conformational changes are induced in CBS domains by bound ligands, highlighting the structural basis for their effects.


Assuntos
Cistationina beta-Sintase/química , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/genética , Humanos , Ligantes , Modelos Moleculares
18.
Biochem J ; 433(3): 497-504, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21067517

RESUMO

mtCBS-PPase [CBS (cystathionine ß-synthase) domain-containing pyrophosphatase from Moorella thermoacetica] contains a pair of CBS domains that strongly bind adenine nucleotides, thereby regulating enzyme activity. Eight residues associated with the CBS domains of mtCBS-PPase were screened to explore possible associations with regulation of enzyme activity. The majority of the substitutions (V99A, R168A, Y169A, Y169F, Y188A and H189A) enhanced the catalytic activity of mtCBS-PPase, two substitutions (R170A and R187G) decreased activity, and one substitution (K100G) had no effect. AMP-binding affinity was markedly decreased in the V99A, R168A and Y169A mutant proteins, and elevated in the R187G and H189A mutant proteins. Remarkably, the R168A and Y169A substitutions changed the effect of AMP from inhibition to activation. The stoichiometry of AMP binding increased from one to two AMP molecules per CBS domain pair in the Y169F, R170A, R187G and Y188A variants. The ADP-binding affinity decreased in three and increased in four mutant proteins. These findings identify residues determining the strength and selectivity of nucleotide binding, as well as the direction (inhibition or activation) of the subsequent effect. The data suggest that mutations in human CBS domain-containing proteins can be translated into a bacterial context. Furthermore, our data support the hypothesis that the CBS domains act as an 'internal inhibitor' of mtCBS-PPase.


Assuntos
Cistationina beta-Sintase/genética , Moorella/enzimologia , Pirofosfatases/genética , Monofosfato de Adenosina , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Cistationina beta-Sintase/química , Análise Mutacional de DNA , Doença/genética , Humanos , Moorella/genética , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína/genética , Pirofosfatases/química
19.
Biochemistry ; 49(5): 1005-13, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20038140

RESUMO

In contrast to all other known pyrophosphatases, Moorella thermoacetica pyrophosphatase (mtCBS-PPase) contains nucleotide-binding CBS domains and is thus strongly regulated by adenine nucleotides. Stopped-flow measurements using a fluorescent AMP analogue, 2'(3')-O-(N-methylanthranoyl)-AMP (Mant-AMP), reveal that nucleotide binding to mtCBS-PPase involves a three-step increase in Mant-AMP fluorescence with relaxation times from 0.01 to 100 s, implying conformational changes in the complex. This effect is reversed by AMP. Metal cofactors (Co(2+) and Mg(2+)) enhance the fluorescence signal but are not absolutely required, unlike what is seen when the catalytic reaction is examined. The relaxation times and amplitudes of the fluorescence signals depend on Mant-AMP concentration in a manner suggestive of the presence of a second binding site for Mant-AMP on the protein. Equilibrium fluorescence titration experiments additionally support the presence of two types of AMP binding sites with different affinities, whereas equilibrium dialysis and membrane filtration measurements reveal binding of one AMP molecule per enzyme monomer, implying negative cooperativity in nucleotide binding. The substrate (PP(i)) modulates Mant-AMP binding, leading to a further conformational change in the enzyme-Mant-AMP complex, and stimulates mtCBS-PPase in alkaline medium within a time scale of minutes, via conversion to a more active form. This active form initially comprises only a third of the enzyme, as estimated from kinetic titration with ADP. AMP inhibits both enzyme forms but is unable to independently induce interconversion. Our results collectively suggest that nucleotides and the substrate induce multiple conformational changes in mtCBS-PPase occurring over a wide time scale; the changes are distinct and almost independent.


Assuntos
Difosfato de Adenosina/química , Monofosfato de Adenosina/química , Proteínas de Bactérias/química , Cistationina beta-Sintase/química , Pirofosfatase Inorgânica/química , Conformação de Ácido Nucleico , Thermoanaerobacter/enzimologia , Adenilil Imidodifosfato/análogos & derivados , Adenilil Imidodifosfato/química , Proteínas de Ligação a DNA/química , Corantes Fluorescentes/química , Pirofosfatase Inorgânica/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato/genética
20.
Biochemistry ; 48(6): 1361-8, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19161295

RESUMO

7,8-Dihydro-8-oxoguanine (8-oxoG) is a ubiquitous oxidative DNA lesion resulting from injury to DNA via reactive oxygen species. 8-oxoG lesions may play a role in the formation of aberrant DNA methylation patterns during carcinogenesis. In this study, we assessed the effects of 8-oxoG on methylation and complex formation of nine 30-mer oligodeoxynucleotide duplexes by the catalytic domain of murine Dnmt3a DNA methyltransferase (Dnmt3a-CD). The effects of 8-oxoG on the methylation rate of hemimethylated duplexes varied from a 25-fold decrease to a 1.8-fold increase, depending on the position of the lesion relative to the Dnmt3a-CD recognition site (CpG) and target cytosine (C). The most significant effect was observed when 8-oxoG replaced guanine within the recognition site immediately downstream of the target cytosine. Fluorescence polarization experiments with fluorescein-labeled duplexes revealed that two molecules of Dnmt3a-CD bind per duplex, generating sigmoid binding curves. Duplexes exhibiting the highest apparent binding cooperativity formed the least stable 1:2 complexes with Dnmt3a-CD and were methylated at the lowest rate. Kinetic analyses disclosed the formation of very stable nonproductive enzyme-substrate complexes with hemimethylated duplexes that act as suicide substrates of Dnmt3a-CD. The presence of 8-oxoG within the CpG site downstream of the target cytosine markedly diminished productive versus nonproductive binding. We propose that 8-oxoG located adjacent to the target cytosine interferes with methylation by weakening the affinity of DNA for Dnmt3a-CD, thereby favoring a nonproductive binding mode.


Assuntos
Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Guanina/análogos & derivados , Animais , Biocatálise/efeitos dos fármacos , Domínio Catalítico , DNA Metiltransferase 3A , DNA-Citosina Metilases/metabolismo , Fluoresceína/metabolismo , Guanina/farmacologia , Cinética , Camundongos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA