Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(4)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38866002

RESUMO

Early detection of tumours remains a significant challenge due to their invasive nature and the limitations of current monitoring techniques. Liquid biopsies have emerged as a minimally invasive diagnostic approach, wherein volatile organic compounds (VOCs) show potential as compelling candidates. However, distinguishing tumour-specific VOCs is difficult due to the presence of gases from non-tumour tissues and environmental factors. Therefore, it is essential to develop preclinical models that accurately mimic the intricate tumour microenvironment to induce cellular metabolic changes and secretion of tumour-associated VOCs. In this study, a microfluidic device was used to recreate the ischaemic environment within solid tumours for the detection of tumour-derived VOCs. The system represents a significant advance in understanding the role of VOCs as biomarkers for early tumour detection and holds the potential to improve patient prognosis; particularly for inaccessible and rapidly progressing tumours such as glioblastoma.


Assuntos
Biomarcadores Tumorais , Progressão da Doença , Dispositivos Lab-On-A-Chip , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Cell Death Dis ; 15(2): 127, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341408

RESUMO

Glioblastoma (GBM) is a highly malignant brain tumour characterised by limited treatment options and poor prognosis. The tumour microenvironment, particularly the central hypoxic region of the tumour, is known to play a pivotal role in GBM progression. Cells within this region adapt to hypoxia by stabilising transcription factor HIF1-α, which promotes cell proliferation, dedifferentiation and chemoresistance. In this study we sought to examine the effects of NNC-55-0396, a tetralol compound which overactivates the unfolded protein response inducing apoptosis, using the organ-on-chip technology. We identified an increased sensitivity of the hypoxic core of the chip to NNC, which correlates with decreasing levels of HIF1-α in vitro. Moreover, NNC blocks the macroautophagic process that is unleashed by hypoxia as revealed by increased levels of autophagosomal constituent LC3-II and autophagy chaperone p62/SQSTM1. The specific effects of NNC in the hypoxic microenvironment unveil additional anti-cancer abilities of this compound and further support investigations on its use in combined therapies against GBM.


Assuntos
Benzimidazóis , Neoplasias Encefálicas , Ciclopropanos , Glioblastoma , Naftalenos , Tetralonas , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Hipóxia/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA