Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 5(11): 100877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37869071

RESUMO

Background & Aims: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common complication of obesity with a hallmark feature of hepatic steatosis. Recent data from animal models of MAFLD have demonstrated substantial changes in macrophage composition in the fatty liver. In humans, the relationship between liver macrophage heterogeneity and liver steatosis is less clear. Methods: Liver tissue from 21 participants was collected at time of bariatric surgery and analysed using flow cytometry, immunofluorescence, and H&E microscopy. Single-cell RNA sequencing was also conducted on a subset of samples (n = 3). Intrahepatic triglyceride content was assessed via MRI and tissue histology. Mouse models of hepatic steatosis were used to investigate observations made from human liver tissue. Results: We observed variable degrees of liver steatosis with minimal fibrosis in our participants. Single-cell RNA sequencing revealed four macrophage clusters that exist in the human fatty liver encompassing Kupffer cells and monocyte-derived macrophages (MdMs). The genes expressed in these macrophage subsets were similar to those observed in mouse models of MAFLD. Hepatic CD14+ monocyte/macrophage number correlated with the degree of steatosis. Using mouse models of early liver steatosis, we demonstrate that recruitment of MdMs precedes Kupffer cell loss and liver damage. Electron microscopy of isolated macrophages revealed increased lipid accumulation in MdMs, and ex vivo lipid transfer experiments suggested that MdMs may serve a distinct role in lipid uptake during MAFLD. Conclusions: The human liver in MAFLD contains macrophage subsets that align well with those that appear in mouse models of fatty liver disease. Recruited myeloid cells correlate well with the degree of liver steatosis in humans. MdMs appear to participate in lipid uptake during early stages of MALFD. Impact and implications: Metabolic dysfunction associated fatty liver disease (MAFLD) is extremely common; however, the early inflammatory responses that occur in human disease are not well understood. In this study, we investigated macrophage heterogeneity in human livers during early MAFLD and demonstrated that similar shifts in macrophage subsets occur in human disease that are similar to those seen in preclinical models. These findings are important as they establish a translational link between mouse and human models of disease, which is important for the development and testing of new therapeutic approaches for MAFLD.

2.
Cell Rep ; 34(2): 108626, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440159

RESUMO

Macrophage-mediated inflammation is critical in the pathogenesis of non-alcoholic steatohepatitis (NASH). Here, we describe that, with high-fat, high-sucrose-diet feeding, mature TIM4pos Kupffer cells (KCs) decrease in number, while monocyte-derived Tim4neg macrophages accumulate. In concert, monocyte-derived infiltrating macrophages enter the liver and consist of a transitional subset that expresses Cx3cr1/Ccr2 and a second subset characterized by expression of Trem2, Cd63, Cd9, and Gpmnb; markers ascribed to lipid-associated macrophages (LAMs). The Cx3cr1/Ccr2-expressing macrophages, referred to as C-LAMs, localize to macrophage aggregates and hepatic crown-like structures (hCLSs) in the steatotic liver. In C-motif chemokine receptor 2 (Ccr2)-deficient mice, C-LAMs fail to appear in the liver, and this prevents hCLS formation, reduces LAM numbers, and increases liver fibrosis. Taken together, our data reveal dynamic changes in liver macrophage subsets during the pathogenesis of NASH and link these shifts to pathologic tissue remodeling.


Assuntos
Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Engenharia Tecidual/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos
3.
Metabolism ; 102: 153996, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678069

RESUMO

BACKGROUND: We have recently shown that a novel signalling kinase, inositol hexakisphosphate kinase 1 (IP6K1), is implicated in whole-body insulin resistance via its inhibitory action on Akt. Insulin and insulin like growth factor 1 (IGF-1) share many intracellular processes with both known to play a key role in glucose and protein metabolism in skeletal muscle. AIMS: We aimed to compare IGF/IP6K1/Akt signalling and the plasma proteomic signature in individuals with a range of BMIs after ingestion of lean meat. METHODS: Ten lean [Body mass index (BMI) (in kg/m2): 22.7 ±â€¯0.4; Homeostatic model assessment of insulin resistance (HOMAIR): 1.36 ±â€¯0.17], 10 overweight (BMI: 27.1 ±â€¯0.5; HOMAIR: 1.25 ±â€¯0.11), and 10 obese (BMI: 35.9 ±â€¯1.3; HOMAIR: 5.82 ±â€¯0.81) adults received primed continuous L-[ring-13C6]phenylalanine infusions. Blood and muscle biopsy samples were collected at 0 min (post-absorptive), 120 min and 300 min relative to the ingestion of 170 g pork loin (36 g protein and 5 g fat) to examine skeletal muscle protein signalling, plasma proteomic signatures, and whole-body phenylalanine disappearance rates (Rd). RESULTS: Phenylalanine Rd was not different in obese compared to lean individuals at all time points and was not responsive to a pork ingestion (basal, P = 0.056; 120 & 300 min, P > 0.05). IP6K1 was elevated in obese individuals at 120 min post-prandial vs basal (P < 0.05). There were no acute differences plasma proteomic profiles between groups in the post-prandial state (P > 0.05). CONCLUSIONS: These data demonstrate, for the first time that muscle IP6K1 protein content is elevated after lean meat ingestion in obese adults, suggesting that IP6K1 may be contributing to the dysregulation of nutrient uptake in skeletal muscle. In addition, proteomic analysis showed no differences in proteomic signatures between obese, overweight or lean individuals.


Assuntos
Proteínas Sanguíneas/metabolismo , Ingestão de Alimentos/fisiologia , Carne , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Proteoma/metabolismo , Adulto , Fatores Etários , Proteínas Sanguíneas/análise , Índice de Massa Corporal , Gorduras na Dieta/farmacologia , Metabolismo Energético/fisiologia , Feminino , Glucose/metabolismo , Humanos , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/análise , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Obesidade/sangue , Obesidade/patologia , Fosfotransferases (Aceptor do Grupo Fosfato)/análise , Período Pós-Prandial/fisiologia , Proteoma/análise , Magreza/sangue , Magreza/metabolismo , Magreza/patologia , Adulto Jovem
4.
J Appl Physiol (1985) ; 127(6): 1792-1801, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31725358

RESUMO

The anabolic action of "fast" whey protein on the regulation of postprandial muscle protein synthesis has been established to be short-lived in healthy young adults. We assessed the time course of anabolic signaling activation and stimulation of myofibrillar protein synthesis rates (MPS) after ingestion of a food source that represents a more typical meal-induced pattern of aminoacidemia. Seven young men (age: 22 ± 1 y) underwent repeated blood and biopsy sampling during primed, continuous l-[ring-2H5]phenylalanine and l-[1-13C]leucine tracer infusions and ingested 38 g of l-[1-13C]phenylalanine- and l-[1-13C]leucine-labeled milk protein concentrate. A total of ∼27 ± 4 (∼10 g) and ∼31 ± 1% (∼12 g) of dietary protein-derived amino acids were released in circulation between 0 and 120 min and 120-300 min, respectively, of the postprandial period. l-[ring-2H5]phenylalanine-based MPS increased above basal (0.025 ± 0.008%/h) by ∼75% (0.043 ± 0.009%/h; P = 0.05) between 0 and 120 min and by ∼86% (0.046 ± 0.004%/h; P = 0.02) between 120 and 300 min, respectively. l-[1-13C]leucine-based MPS increased above basal (0.027 ± 0.002%/h) by ∼72% (0.051 ± 0.016%/h; P = 0.10) between 0 and 120 min and by ∼62% (0.047 ± 0.004%/h; P = 0.001) between 120 and 300 min, respectively. Myofibrillar protein-bound l-[1-13C]phenylalanine increased over time (P < 0.001) and equaled 0.004 ± 0.001, 0.008 ± 0.002, 0.017 ± 0.004, and 0.020 ± 0.003 mole percent excess at 60, 120, 180, and 300 min, respectively, of the postprandial period. Milk protein ingestion increased mTORC1 phosphorylation at 120, 180, and 300 min of the postprandial period (all P < 0.05). Our results show that ingestion of 38 g of milk protein results in sustained increases in MPS throughout a 5-h postprandial period in healthy young men.NEW & NOTEWORTHY The stimulation of muscle protein synthesis after whey protein ingestion is short-lived due to its transient systemic appearance of amino acids. Our study characterized the muscle anabolic response to a protein source that results in a more gradual release of amino acids into circulation. Our work demonstrates that a sustained increase in postprandial plasma amino acid availability after milk protein ingestion results in a prolonged stimulation of muscle protein synthesis rates in healthy young men.


Assuntos
Ingestão de Alimentos/fisiologia , Proteínas do Leite/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Período Pós-Prandial/fisiologia , Biossíntese de Proteínas/fisiologia , Adulto , Aminoácidos/metabolismo , Glicemia/metabolismo , Glicemia/fisiologia , Caseínas/metabolismo , Dieta , Proteínas Alimentares/metabolismo , Humanos , Leucina/metabolismo , Masculino , Miofibrilas/metabolismo , Miofibrilas/fisiologia , Fenilalanina/metabolismo , Proteínas do Soro do Leite/metabolismo , Adulto Jovem
5.
Kidney Int Rep ; 3(6): 1403-1415, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30450467

RESUMO

INTRODUCTION: Skeletal muscle loss is common in patients with renal failure who receive maintenance hemodialysis (MHD) therapy. Regular ingestion of protein-rich meals are recommended to help offset muscle protein loss in MHD patients, but little is known about the anabolic potential of this strategy. METHODS: Eight MHD patients (age: 56 ± 5 years; body mass index [BMI]: 32 ± 2 kg/m2) and 8 nonuremic control subjects (age: 50 ± 2 years: BMI: 31 ± 1 kg/m2) received primed continuous L-[ring-2H5]phenylalanine and L-[1-13C]leucine infusions with blood and muscle biopsy sampling on a nondialysis day. Participants consumed a mixed meal (546 kcal; 20-g protein, 59-g carbohydrates, 26-g fat) with protein provided as L-[5,5,5-2H3]leucine-labeled eggs. RESULTS: Circulating dietary amino acid availability was reduced in MHD patients (41 ± 5%) versus control subjects (61 ± 4%; P = 0.03). Basal muscle caspase-3 protein content was elevated (P = 0.03) and large neutral amino acid transporter 1 (LAT1) protein content was reduced (P = 0.02) in MHD patients versus control subjects. Basal muscle protein synthesis (MPS) was ∼2-fold higher in MHD patients (0.030 ± 0.005%/h) versus control subjects (0.014 ± 0.003%/h) (P = 0.01). Meal ingestion failed to increase MPS in MHD patients (absolute change from basal: 0.0003 ± 0.007%/h), but stimulated MPS in control subjects (0.009 ± 0.002%/h; P = 0.004). CONCLUSIONS: MHD patients demonstrated muscle anabolic resistance to meal ingestion. This blunted postprandial MPS response in MHD patients might be related to high basal MPS, which results in a stimulatory ceiling effect and/or reduced plasma dietary amino acid availability after mixed-meal ingestion.

6.
Med Sci Sports Exerc ; 50(1): 88-97, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28806276

RESUMO

INTRODUCTION: Circulating progenitor cells (CPC) are a heterogeneous population of stem/progenitor cells in peripheral blood that participate in tissue repair. CPC mobilization has been well characterized in able-bodied persons but has not been previously investigated in wheelchair racing athletes. The purpose of this study was to characterize CPC and CPC subpopulation mobilization in elite wheelchair racing athletes in response to acute, upper-extremity aerobic exercise to determine whether CPC responses are similar to ambulatory populations. METHODS: Eight participants (three females; age = 27.5 ± 4.0 yr, supine height = 162.5 ± 18.6 cm, weight = 53.5 ± 10.9 kg, V˙O2peak = 2.4 ± 0.62 L·min, years postinjury = 21.5 ± 6.2 yr) completed a 25-km time trial on a road course. Blood sampling occurred before and immediately after exercise for quantification of CPC (CD34), hematopoietic stem and progenitor cells (HSPC) (CD34/CD45), hematopoietic stem cells (HSC) (CD34/CD45/CD38), CD34 adipose tissue (AT)-derived mesenchymal stromal cells (MSC) (CD45/CD34/CD105/CD31), CD34 bone marrow (BM)-derived MSC (CD45/CD34/CD105/CD31), and endothelial progenitor cells (EPC) (CD45/CD34/VEGFR2) via flow cytometry. Blood lactate was measured before and after trial as an indicator of exercise intensity. RESULTS: CPC concentration increased 5.7-fold postexercise (P = 0.10). HSPC, HSC, EPC, and both MSC populations were not increased postexercise. Baseline HSPC populations were significantly positively correlated to absolute V˙O2peak (rho = 0.71, P < 0.05) with HSC trending to positively correlate to V˙O2peak (rho = 0.62, P = 0.10). AT-MSC populations were trending to be negatively correlated to baseline V˙O2peak (rho = -0.62, P = 0.058). The change in CPC, EPC, and AT-MSC pre- and postexercise significantly positively correlated to the change in lactate concentrations (rho = 0.91 P = 0.002, 0.71 P = 0.047, 0.81 P = 0.02, respectively, all P < 0.05). CONCLUSION: These data suggest that CPC content in wheelchair racing athletes is related to cardiorespiratory fitness, and responses to exercise are positively related to exercise intensity.


Assuntos
Células Progenitoras Endoteliais/citologia , Exercício Físico/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Mesenquimais/citologia , Cadeiras de Rodas , Tecido Adiposo/citologia , Adulto , Atletas , Células da Medula Óssea , Aptidão Cardiorrespiratória , Feminino , Humanos , Masculino , Consumo de Oxigênio , Adulto Jovem
7.
Am J Clin Nutr ; 106(6): 1401-1412, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28978542

RESUMO

Background: Protein in the diet is commonly ingested from whole foods that contain various macro- and micronutrients. However, the effect of consuming protein within its natural whole-food matrix on postprandial protein metabolism remains understudied in humans.Objective: We aimed to compare the whole-body and muscle protein metabolic responses after the consumption of whole eggs with egg whites during exercise recovery in young men.Design: In crossover trials, 10 resistance-trained men [aged 21 ± 1 y; 88 ± 3 kg; body fat: 16% ± 1% (means ± SEMs)] received primed continuous l-[ring-2H5]phenylalanine and l-[1-13C]leucine infusions and performed a single bout of resistance exercise. After exercise, participants consumed intrinsically l-[5,5,5-2H3]leucine-labeled whole eggs (18 g protein, 17 g fat) or egg whites (18 g protein, 0 g fat). Repeated blood and muscle biopsy samples were collected to assess whole-body leucine kinetics, intramuscular signaling, and myofibrillar protein synthesis.Results: Plasma appearance rates of protein-derived leucine were more rapid after the consumption of egg whites than after whole eggs (P = 0.01). Total plasma availability of leucine over the 300-min postprandial period was similar (P= 0.75) between the ingestion of whole eggs (68% ± 1%) and egg whites (66% ± 2%), with no difference in whole-body net leucine balance (P = 0.27). Both whole-egg and egg white conditions increased the phosphorylation of mammalian target of rapamycin complex 1, ribosomal protein S6 kinase 1, and eukaryotic translation initiation factor 4E-binding protein 1 during postexercise recovery (all P < 0.05). However, whole-egg ingestion increased the postexercise myofibrillar protein synthetic response to a greater extent than did the ingestion of egg whites (P= 0.04).Conclusions: We show that the ingestion of whole eggs immediately after resistance exercise resulted in greater stimulation of myofibrillar protein synthesis than did the ingestion of egg whites, despite being matched for protein content in young men. Our data indicate that the ingestion of nutrient- and protein-dense foods differentially stimulates muscle anabolism compared with protein-dense foods. This trial was registered at clinicaltrials.gov as NCT03117127.


Assuntos
Proteínas Alimentares/farmacologia , Ovos , Exercício Físico/fisiologia , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Tecido Adiposo , Adulto , Estudos Cross-Over , Dieta , Proteínas Alimentares/administração & dosagem , Ingestão de Alimentos , Clara de Ovo , Humanos , Leucina/sangue , Leucina/farmacocinética , Masculino , Músculo Esquelético/metabolismo , Nitrogênio/administração & dosagem , Nitrogênio/farmacologia , Fenilalanina/metabolismo , Período Pós-Prandial , Adulto Jovem
8.
Am J Clin Nutr ; 104(4): 1014-1022, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27604771

RESUMO

BACKGROUND: Excess body fat diminishes muscle protein synthesis rates in response to hyperinsulinemic-hyperaminoacidemic clamps. However, muscle protein synthetic responses after the ingestion of a protein-dense food source across a range of body mass indexes (BMIs) have not been compared. OBJECTIVE: We compared the myofibrillar protein synthetic response and underlying nutrient-sensing mechanisms after the ingestion of lean pork between obese, overweight, and healthy-weight adults. DESIGN: Ten healthy-weight [HW; BMI (in kg/m2): 22.7 ± 0.4], 10 overweight (OW; BMI: 27.1 ± 0.5), and 10 obese (OB; BMI: 35.9 ± 1.3) adults received primed continuous l-[ring-13C6]phenylalanine infusions. Blood and muscle biopsy samples were collected before and after the ingestion of 170 g pork (36 g protein and 3 g fat) to assess skeletal muscle anabolic signaling, amino acid transporters [large neutral and small neutral amino acid transporters (LAT1, SNAT2) and CD98], and myofibrillar protein synthesis. RESULTS: At baseline, OW and OB groups showed greater relative amounts of mammalian target of rapamycin complex 1 (mTORC1) protein than the HW group. Pork ingestion increased mTORC1 phosphorylation only in the HW group (P = 0.001). LAT1 and SNAT2 protein content increased during the postprandial period in all groups (time effect, P < 0.05). Basal myofibrillar protein synthetic responses were similar between groups (P = 0.43). However, myofibrillar protein synthetic responses (0-300 min) were greater in the HW group (1.6-fold; P = 0.005) after pork ingestion than in the OW and OB groups. CONCLUSIONS: There is a diminished myofibrillar protein synthetic response to the ingestion of protein-dense food in overweight and obese adults compared with healthy-weight controls. These data indicate that impaired postprandial myofibrillar protein synthetic response may be an early defect with increasing fat mass, potentially dependent on altered anabolic signals, that reduces muscle sensitivity to food ingestion. This trial was registered at clinicaltrials.gov as NCT02613767.


Assuntos
Tecido Adiposo/metabolismo , Índice de Massa Corporal , Proteínas Alimentares/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Adiposidade , Adulto , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Dieta , Ingestão de Energia , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Sobrepeso , Período Pós-Prandial , Carne Vermelha , Valores de Referência , Suínos , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
9.
High Alt Med Biol ; 16(4): 331-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26680684

RESUMO

In hypoxia, endurance exercise performance is diminished; pharmacotherapy may abrogate this performance deficit. Based on positive outcomes in preclinical trials, we hypothesized that oral administration of methazolamide, a carbonic anhydrase inhibitor, aminophylline, a nonselective adenosine receptor antagonist and phosphodiesterase inhibitor, and/or methazolamide combined with aminophylline would attenuate hypoxia-mediated decrements in endurance exercise performance in humans. Fifteen healthy males (26 ± 5 years, body-mass index: 24.9 ± 1.6 kg/m(2); mean ± SD) were randomly assigned to one of four treatments: placebo (n = 9), methazolamide (250 mg; n = 10), aminophylline (400 mg; n = 9), or methazolamide (250 mg) with aminophylline (400 mg; n = 8). On two separate occasions, the first in normoxia (FIO2 = 0.21) and the second in hypoxia (FIO2 = 0.15), participants sat for 4.5 hours before completing a standardized exercise bout (30 minutes, stationary cycling, 100 W), followed by a 12.5-km time trial. The magnitude of time trial performance decrement in hypoxia versus normoxia did not differ between placebo (+3.0 ± 2.7 minutes), methazolamide (+1.4 ± 1.7 minutes), and aminophylline (+1.8 ± 1.2 minutes), all with p > 0.09; however, the performance decrement in hypoxia versus normoxia with methazolamide combined with aminophylline was less than placebo (+0.6 ± 1.5 minutes; p = 0.01). This improvement may have been partially mediated by increased SpO2 in hypoxia with methazolamide combined with aminophylline compared with placebo (73% ± 3% vs. 79% ± 6%; p < 0.02). In conclusion, coadministration of methazolamide and aminophylline may promote endurance exercise performance during a sojourn at high altitude.


Assuntos
Aminofilina/administração & dosagem , Exercício Físico/fisiologia , Hipóxia/tratamento farmacológico , Metazolamida/administração & dosagem , Resistência Física/efeitos dos fármacos , Adulto , Altitude , Quimioterapia Combinada , Teste de Esforço/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Hipóxia/fisiopatologia , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA