Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Pathog ; 20(6): e1011915, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38861581

RESUMO

Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.


Assuntos
Mycobacterium tuberculosis , Animais , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Camundongos , Locos de Características Quantitativas , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Modelos Animais de Doenças , Animais não Endogâmicos , Humanos , Mapeamento Cromossômico , Biologia de Sistemas
2.
Infect Immun ; 92(7): e0026323, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38899881

RESUMO

Because most humans resist Mycobacterium tuberculosis infection, there is a paucity of lung samples to study. To address this gap, we infected Diversity Outbred mice with M. tuberculosis and studied the lungs of mice in different disease states. After a low-dose aerosol infection, progressors succumbed to acute, inflammatory lung disease within 60 days, while controllers maintained asymptomatic infection for at least 60 days, and then developed chronic pulmonary tuberculosis (TB) lasting months to more than 1 year. Here, we identified features of asymptomatic M. tuberculosis infection by applying computational and statistical approaches to multimodal data sets. Cytokines and anti-M. tuberculosis cell wall antibodies discriminated progressors vs controllers with chronic pulmonary TB but could not classify mice with asymptomatic infection. However, a novel deep-learning neural network trained on lung granuloma images was able to accurately classify asymptomatically infected lungs vs acute pulmonary TB in progressors vs chronic pulmonary TB in controllers, and discrimination was based on perivascular and peribronchiolar lymphocytes. Because the discriminatory lesion was rich in lymphocytes and CD4 T cell-mediated immunity is required for resistance, we expected CD4 T-cell genes would be elevated in asymptomatic infection. However, the significantly different, highly expressed genes were from B-cell pathways (e.g., Bank1, Cd19, Cd79, Fcmr, Ms4a1, Pax5, and H2-Ob), and CD20+ B cells were enriched in the perivascular and peribronchiolar regions of mice with asymptomatic M. tuberculosis infection. Together, these results indicate that genetically controlled B-cell responses are important for establishing asymptomatic M. tuberculosis lung infection.


Assuntos
Linfócitos B , Pulmão , Mycobacterium tuberculosis , Tuberculose Pulmonar , Animais , Camundongos , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Mycobacterium tuberculosis/imunologia , Linfócitos B/imunologia , Pulmão/microbiologia , Pulmão/patologia , Pulmão/imunologia , Granuloma/microbiologia , Granuloma/imunologia , Granuloma/patologia , Tecido Linfoide/imunologia , Tecido Linfoide/microbiologia , Tecido Linfoide/patologia , Modelos Animais de Doenças , Feminino , Infecções Assintomáticas , Citocinas/metabolismo , Citocinas/genética
3.
Vaccines (Basel) ; 12(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38543876

RESUMO

Mycobacterium bovis Bacillus Calmette-Guérin (BCG) protects against childhood tuberculosis; and unlike most vaccines, BCG broadly impacts immunity to other pathogens and even some cancers. Early in the COVID-19 pandemic, epidemiological studies identified a protective association between BCG vaccination and outcomes of SARS-CoV-2, but the associations in later studies were inconsistent. We sought possible reasons and noticed the study populations often lived in the same country. Since individuals from the same regions can share common ancestors, we hypothesized that genetic background could influence associations between BCG and SARS-CoV-2. To explore this hypothesis in a controlled environment, we performed a pilot study using Diversity Outbred mice. First, we identified amino acid sequences shared by BCG and SARS-CoV-2 spike protein. Next, we tested for IgG reactive to spike protein from BCG-vaccinated mice. Sera from some, but not all, BCG-vaccinated Diversity Outbred mice contained higher levels of IgG cross-reactive to SARS-CoV-2 spike protein than sera from BCG-vaccinated C57BL/6J inbred mice and unvaccinated mice. Although larger experimental studies are needed to obtain mechanistic insight, these findings suggest that genetic background may be an important variable contributing to different associations observed in human randomized clinical trials evaluating BCG vaccination on SARS-CoV-2 and COVID-19.

4.
IEEE Access ; 12: 17164-17194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515959

RESUMO

Tuberculosis (TB), primarily affecting the lungs, is caused by the bacterium Mycobacterium tuberculosis and poses a significant health risk. Detecting acid-fast bacilli (AFB) in stained samples is critical for TB diagnosis. Whole Slide (WS) Imaging allows for digitally examining these stained samples. However, current deep-learning approaches to analyzing large-sized whole slide images (WSIs) often employ patch-wise analysis, potentially missing the complex spatial patterns observed in the granuloma essential for accurate TB classification. To address this limitation, we propose an approach that models cell characteristics and interactions as a graph, capturing both cell-level information and the overall tissue micro-architecture. This method differs from the strategies in related cell graph-based works that rely on edge thresholds based on sparsity/density in cell graph construction, emphasizing a biologically informed threshold determination instead. We introduce a cell graph-based jumping knowledge neural network (CG-JKNN) that operates on the cell graphs where the edge thresholds are selected based on the length of the mycobacteria's cords and the activated macrophage nucleus's size to reflect the actual biological interactions observed in the tissue. The primary process involves training a Convolutional Neural Network (CNN) to segment AFBs and macrophage nuclei, followed by converting large (42831*41159 pixels) lung histology images into cell graphs where an activated macrophage nucleus/AFB represents each node within the graph and their interactions are denoted as edges. To enhance the interpretability of our model, we employ Integrated Gradients and Shapely Additive Explanations (SHAP). Our analysis incorporated a combination of 33 graph metrics and 20 cell morphology features. In terms of traditional machine learning models, Extreme Gradient Boosting (XGBoost) was the best performer, achieving an F1 score of 0.9813 and an Area under the Precision-Recall Curve (AUPRC) of 0.9848 on the test set. Among graph-based models, our CG-JKNN was the top performer, attaining an F1 score of 0.9549 and an AUPRC of 0.9846 on the held-out test set. The integration of graph-based and morphological features proved highly effective, with CG-JKNN and XGBoost showing promising results in classifying instances into AFB and activated macrophage nucleus. The features identified as significant by our models closely align with the criteria used by pathologists in practice, highlighting the clinical applicability of our approach. Future work will explore knowledge distillation techniques and graph-level classification into distinct TB progression categories.

5.
Diagnostics (Basel) ; 13(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37443670

RESUMO

This paper presents a combined optical imaging/artificial intelligence (OI/AI) technique for the real-time analysis of tissue morphology at the tip of the biopsy needle, prior to collecting a biopsy specimen. This is an important clinical problem as up to 40% of collected biopsy cores provide low diagnostic value due to high adipose or necrotic content. Micron-scale-resolution optical coherence tomography (OCT) images can be collected with a minimally invasive needle probe and automatically analyzed using a computer neural network (CNN)-based AI software. The results can be conveyed to the clinician in real time and used to select the biopsy location more adequately. This technology was evaluated on a rabbit model of cancer. OCT images were collected with a hand-held custom-made OCT probe. Annotated OCT images were used as ground truth for AI algorithm training. The overall performance of the AI model was very close to that of the humans performing the same classification tasks. Specifically, tissue segmentation was excellent (~99% accuracy) and provided segmentation that closely mimicked the ground truth provided by the human annotations, while over 84% correlation accuracy was obtained for tumor and non-tumor classification.

6.
Am J Vet Res ; 83(8)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35895781

RESUMO

OBJECTIVE: To determine (1) if chemokine (C-X-C motif) ligand 1 (CXCL1), matrix metalloproteinase 8 (MMP8), interleukin-10 (IL-10), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) can be detected in serum from Asian elephants, and (2) if their concentrations are significantly elevated in Mycobacterium tuberculosis (M.tb) culture-positive elephants compared to -negative elephants. CXCL1, MMP8, IL-10, IFN-γ, and TNF-α were recently identified as potential diagnostic biomarkers for pulmonary tuberculosis in experimental studies in animals and humans. Therefore, we hypothesized that they would be detectable and significantly elevated in M.tb culture-positive elephants compared to M.tb culture-negative elephants. SAMPLE: 101 Asian elephant serum samples, including 91 samples from 6 M.tb-negative elephants and 10 samples from 5 M.tb-positive elephants (none of which exhibited clinical signs of disease). M.tb status was determined by trunk wash culture. PROCEDURES: Commercially available ELISA kits were used to determine the concentrations of each biomarker in serum samples. RESULTS: Biomarker concentrations were below the limit of detection for the assay in 100/101 (99%) samples for CXCL1, 98/101 (97%) samples for MMP8, 85/101 (84%) samples for IL-10, 75/101 (74%) samples for IFN-γ, and 45/101 (45%) samples for TNF-α. Multiple M.tb culture-positive elephants did not have detectable levels of any of the 5 biomarkers. CLINICAL RELEVANCE: CXCL1, MMP8, IL-10, IFN-γ, and TNF-α were not elevated in M.tb culture-positive Asian elephants compared to M.tb culture-negative Asian elephants. This may be related to disease state (ie, clinically asymptomatic). More sensitive assays are needed to better understand the role of these biomarkers in M.tb infection in Asian elephants.


Assuntos
Elefantes , Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Animais , Biomarcadores , Elefantes/microbiologia , Humanos , Interferon gama , Interleucina-10 , Metaloproteinase 8 da Matriz , Tuberculose/diagnóstico , Tuberculose/veterinária , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/veterinária , Fator de Necrose Tumoral alfa
7.
PLoS Pathog ; 17(8): e1009773, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34403447

RESUMO

More humans have died of tuberculosis (TB) than any other infectious disease and millions still die each year. Experts advocate for blood-based, serum protein biomarkers to help diagnose TB, which afflicts millions of people in high-burden countries. However, the protein biomarker pipeline is small. Here, we used the Diversity Outbred (DO) mouse population to address this gap, identifying five protein biomarker candidates. One protein biomarker, serum CXCL1, met the World Health Organization's Targeted Product Profile for a triage test to diagnose active TB from latent M.tb infection (LTBI), non-TB lung disease, and normal sera in HIV-negative, adults from South Africa and Vietnam. To find the biomarker candidates, we quantified seven immune cytokines and four inflammatory proteins corresponding to highly expressed genes unique to progressor DO mice. Next, we applied statistical and machine learning methods to the data, i.e., 11 proteins in lungs from 453 infected and 29 non-infected mice. After searching all combinations of five algorithms and 239 protein subsets, validating, and testing the findings on independent data, two combinations accurately diagnosed progressor DO mice: Logistic Regression using MMP8; and Gradient Tree Boosting using a panel of 4: CXCL1, CXCL2, TNF, IL-10. Of those five protein biomarker candidates, two (MMP8 and CXCL1) were crucial for classifying DO mice; were above the limit of detection in most human serum samples; and had not been widely assessed for diagnostic performance in humans before. In patient sera, CXCL1 exceeded the triage diagnostic test criteria (>90% sensitivity; >70% specificity), while MMP8 did not. Using Area Under the Curve analyses, CXCL1 averaged 94.5% sensitivity and 88.8% specificity for active pulmonary TB (ATB) vs LTBI; 90.9% sensitivity and 71.4% specificity for ATB vs non-TB; and 100.0% sensitivity and 98.4% specificity for ATB vs normal sera. Our findings overall show that the DO mouse population can discover diagnostic-quality, serum protein biomarkers of human TB.


Assuntos
Biomarcadores/metabolismo , Quimiocina CXCL1/metabolismo , Aprendizado de Máquina , Mycobacterium tuberculosis/fisiologia , Transcriptoma , Tuberculose Pulmonar/diagnóstico , Animais , Animais não Endogâmicos , Citocinas/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Curva ROC , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia
8.
EBioMedicine ; 62: 103094, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33166789

RESUMO

BACKGROUND: Identifying which individuals will develop tuberculosis (TB) remains an unresolved problem due to few animal models and computational approaches that effectively address its heterogeneity. To meet these shortcomings, we show that Diversity Outbred (DO) mice reflect human-like genetic diversity and develop human-like lung granulomas when infected with Mycobacterium tuberculosis (M.tb) . METHODS: Following M.tb infection, a "supersusceptible" phenotype develops in approximately one-third of DO mice characterized by rapid morbidity and mortality within 8 weeks. These supersusceptible DO mice develop lung granulomas patterns akin to humans. This led us to utilize deep learning to identify supersusceptibility from hematoxylin & eosin (H&E) lung tissue sections utilizing only clinical outcomes (supersusceptible or not-supersusceptible) as labels. FINDINGS: The proposed machine learning model diagnosed supersusceptibility with high accuracy (91.50 ± 4.68%) compared to two expert pathologists using H&E stained lung sections (94.95% and 94.58%). Two non-experts used the imaging biomarker to diagnose supersusceptibility with high accuracy (88.25% and 87.95%) and agreement (96.00%). A board-certified veterinary pathologist (GB) examined the imaging biomarker and determined the model was making diagnostic decisions using a form of granuloma necrosis (karyorrhectic and pyknotic nuclear debris). This was corroborated by one other board-certified veterinary pathologist. Finally, the imaging biomarker was quantified, providing a novel means to convert visual patterns within granulomas to data suitable for statistical analyses. IMPLICATIONS: Overall, our results have translatable implication to improve our understanding of TB and also to the broader field of computational pathology in which clinical outcomes alone can drive automatic identification of interpretable imaging biomarkers, knowledge discovery, and validation of existing clinical biomarkers. FUNDING: National Institutes of Health and American Lung Association.


Assuntos
Biomarcadores , Aprendizado Profundo , Imagem Molecular , Mycobacterium tuberculosis , Tuberculose/diagnóstico , Tuberculose/etiologia , Algoritmos , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica/métodos , Aprendizado de Máquina , Masculino , Imagem Molecular/métodos , Prognóstico , Reprodutibilidade dos Testes
9.
Microorganisms ; 7(12)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817882

RESUMO

Granuloma necrosis occurs in hosts susceptible to pathogenic mycobacteria and is a diagnostic visual feature of pulmonary tuberculosis (TB) in humans and in super-susceptible Diversity Outbred (DO) mice infected with Mycobacterium tuberculosis. Currently, no published automated algorithms can detect granuloma necrosis in pulmonary TB. However, such a method could reduce variability, and transform visual patterns into quantitative data for statistical and machine learning analyses. Here, we used histopathological images from super-susceptible DO mice to train, validate, and performance test an algorithm to detect regions of cell-poor necrosis. The algorithm, named 2D-TB, works on 2-dimensional histopathological images in 2 phases. In phase 1, granulomas are detected following background elimination. In phase 2, 2D-TB searches within granulomas for regions of cell-poor necrosis. We used 8 lung sections from 8 different super-susceptible DO mice for training and 10-fold cross validation. We used 13 new lung sections from 10 different super-susceptible DO mice for performance testing. 2D-TB reached 100.0% sensitivity and 91.8% positive prediction value. Compared to an expert pathologist, agreement was 95.5% and there was a statistically significant positive correlation for area detected by 2D-TB and the pathologist. These results show the development, validation, and accurate performance of 2D-TB to detect granuloma necrosis.

10.
J Infect Dis ; 220(3): 514-523, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30923818

RESUMO

As we age, there is an increased risk for the development of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection. Few studies consider that age-associated changes in the alveolar lining fluid (ALF) may increase susceptibility by altering soluble mediators of innate immunity. We assessed the impact of adult or elderly human ALF during Mtb infection in vitro and in vivo. We identified amplification of pro-oxidative and proinflammatory pathways in elderly ALF and decreased binding capability of surfactant-associated surfactant protein A (SP-A) and surfactant protein D (SP-D) to Mtb. Human macrophages infected with elderly ALF-exposed Mtb had reduced control and fewer phagosome-lysosome fusion events, which was reversed when elderly ALF was replenished with functional SP-A/SP-D. In vivo, exposure to elderly ALF exacerbated Mtb infection in young mice. Our studies demonstrate how the pulmonary environment changes as we age and suggest that Mtb may benefit from declining host defenses in the lung mucosa of the elderly.


Assuntos
Pulmão/imunologia , Pulmão/microbiologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Tuberculose/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Lisossomos/imunologia , Lisossomos/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Fagossomos/imunologia , Fagossomos/microbiologia , Proteína A Associada a Surfactante Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/imunologia , Tuberculose/microbiologia , Adulto Jovem
11.
Vet Ophthalmol ; 20(3): 273-279, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27191927

RESUMO

PURPOSE: To describe the clinical and histopathologic features of glaucoma associated with Descemet's membrane (DM) detachment in five horses without prior history of intraocular surgery. ANIMALS STUDIED: Three Appaloosa horses and two Thoroughbreds were included in this study. The affected horses ranged in age from 16 to 27 years and presented with severe diffuse corneal edema. PROCEDURE: Five eyes were enucleated due to intraocular hypertension and/or chronic corneal ulceration. The enucleated globes were evaluated by the Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW). Each globe was routinely processed for histopathology and analyzed by light microscopy. A histologic diagnosis of glaucoma was reached by demonstrating a loss of optic nerve axonal tissue by measuring neurofilament-immunopositive axons with automated image analysis software. RESULTS: All five horses presented with unilateral severe diffuse corneal edema that had developed between 2 and 16 weeks prior to enucleation. Intraocular pressures for the affected eyes were between 9 and 87 mmHg prior to enucleation. Descemet's membrane detachment was identified histopathologically in all five globes (5/5, 100%). All five eyes had an avascular spindle cell proliferation filling the space between the displaced peripheral DM and the corneal stroma. Neurofilament immunostaining revealed axonal loss consistent with glaucoma. CONCLUSION: Equine glaucoma may be associated with Descemet's membrane detachment. This detachment and glaucoma is a possible differential diagnosis for severe equine corneal edema. In this case series, an eye with a DM detachment had a poor prognosis for retention.


Assuntos
Lâmina Limitante Posterior/lesões , Glaucoma/veterinária , Doenças dos Cavalos/diagnóstico , Animais , Edema da Córnea/diagnóstico , Edema da Córnea/veterinária , Enucleação Ocular/veterinária , Feminino , Glaucoma/diagnóstico , Cavalos , Masculino
12.
Sci Rep ; 6: 36720, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819295

RESUMO

IL-21 is produced predominantly by activated CD4+ T cells and has pleiotropic effects on immunity via the IL-21 receptor (IL-21R), a member of the common gamma chain (γc) cytokine receptor family. We show that IL-21 signaling plays a crucial role in T cell responses during Mycobacterium tuberculosis infection by augmenting CD8+ T cell priming, promoting T cell accumulation in the lungs, and enhancing T cell cytokine production. In the absence of IL-21 signaling, more CD4+ and CD8+ T cells in chronically infected mice express the T cell inhibitory molecules PD-1 and TIM-3. We correlate these immune alterations with increased susceptibility of IL-21R-/- mice, which have increased lung bacterial burden and earlier mortality compared to WT mice. Finally, to causally link the immune defects with host susceptibility, we use an adoptive transfer model to show that IL-21R-/- T cells transfer less protection than WT T cells. These results prove that IL-21 signaling has an intrinsic role in promoting the protective capacity of T cells. Thus, the net effect of IL-21 signaling is to enhance host resistance to M. tuberculosis. These data position IL-21 as a candidate biomarker of resistance to tuberculosis.


Assuntos
Resistência à Doença/imunologia , Interleucinas/metabolismo , Tuberculose/imunologia , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Citocinas/metabolismo , Feminino , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Interferon gama/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mycobacterium tuberculosis , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais
13.
Clin Vaccine Immunol ; 23(9): 774-84, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27413067

RESUMO

Clostridium difficile infection (CDI), a leading cause of nosocomial infection, is a serious disease in North America, Europe, and Asia. CDI varies greatly from asymptomatic carriage to life-threatening diarrhea, toxic megacolon, and toxemia. The incidence of community-acquired infection has increased due to the emergence of hypervirulent antibiotic-resistant strains. These new strains contribute to the frequent occurrence of disease relapse, complicating treatment, increasing hospital stays, and increasing morbidity and mortality among patients. Therefore, it is critical to develop new therapeutic approaches that bypass the development of antimicrobial resistance and avoid disruption of gut microflora. Here, we describe the construction of a single heteromultimeric VHH-based neutralizing agent (VNA) that targets the two primary virulence factors of Clostridium difficile, toxins A (TcdA) and B (TcdB). Designated VNA2-Tcd, this agent has subnanomolar toxin neutralization potencies for both C. difficile toxins in cell assays. When given systemically by parenteral administration, VNA2-Tcd protected against CDI in gnotobiotic piglets and mice and to a lesser extent in hamsters. Protection from CDI was also observed in gnotobiotic piglets treated by gene therapy with an adenovirus that promoted the expression of VNA2-Tcd.


Assuntos
Anticorpos Antibacterianos/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Antitoxinas/uso terapêutico , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Adenoviridae/genética , Animais , Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Modelos Animais de Doenças , Portadores de Fármacos , Avaliação Pré-Clínica de Medicamentos , Enterotoxinas/antagonistas & inibidores , Terapia Genética/métodos , Mesocricetus , Camundongos Endogâmicos C57BL , Suínos , Resultado do Tratamento
14.
Semin Immunopathol ; 38(2): 221-37, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26542392

RESUMO

A key aspect of TB pathogenesis that maintains Mycobacterium tuberculosis in the human population is the ability to cause necrosis in pulmonary lesions. As co-evolution shaped M . tuberculosis (M.tb) and human responses, the complete TB disease profile and lesion manifestation are not fully reproduced by any animal model. However, animal models are absolutely critical to understand how infection with virulent M.tb generates outcomes necessary for the pathogen transmission and evolutionary success. In humans, a wide spectrum of TB outcomes has been recognized based on clinical and epidemiological data. In mice, there is clear genetic basis for susceptibility. Although the spectra of human and mouse TB do not completely overlap, comparison of human TB with mouse lesions across genetically diverse strains firmly establishes points of convergence. By embracing the genetic heterogeneity of the mouse population, we gain tremendous advantage in the quest for suitable in vivo models. Below, we review genetically defined mouse models that recapitulate a key element of M.tb pathogenesis-induction of necrotic TB lesions in the lungs-and discuss how these models may reflect TB stratification and pathogenesis in humans. The approach ensures that roles that mouse models play in basic and translational TB research will continue to increase allowing researchers to address fundamental questions of TB pathogenesis and bacterial physiology in vivo using this well-defined, reproducible, and cost-efficient system. Combination of the new generation mouse models with advanced imaging technologies will also allow rapid and inexpensive assessment of experimental vaccines and therapies prior to testing in larger animals and clinical trials.


Assuntos
Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Tuberculose/microbiologia , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Modelos Animais de Doenças , Loci Gênicos , Predisposição Genética para Doença , Variação Genética , Granuloma/imunologia , Granuloma/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Necrose , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Neutrófilos/patologia , Receptores de Somatostatina/genética , Tuberculose/tratamento farmacológico , Tuberculose/patologia
15.
JFMS Open Rep ; 2(1): 2055116916641970, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28491417

RESUMO

CASE SUMMARY: A 2-month-old, male kitten was presented for evaluation of unilateral blepharospasm and epiphora involving the right eye. Ocular examination revealed conjunctivitis, a superficial corneal ulcer, reflex anterior uveitis and a haired mass within the dorsal cornea of the right eye. The mass was subsequently removed surgically via a lamellar keratectomy. Histologic evaluation of the mass via light microscopy revealed it to be comprised of normal-haired skin with mild inflammation. One week after surgical removal and medical management of the corneal ulcer, all ocular clinical signs had resolved with minimal corneal scarring. On re-examination 6 months following surgical excision of the mass, the kitten was noted to be comfortable with no significant corneal scarring. RELEVANCE AND NOVEL INFORMATION: To our knowledge, this is the first case report of a dorsally located corneal dermoid in a cat.

16.
Trials Vaccinol ; 5: 1-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26640609

RESUMO

In areas were human visceral leishmaniasis (VL) is endemic, the domestic dog is the main parasite reservoir in the infectious cycle of Leishmania infantum. Development of prophylactic strategies to lower the parasite burden in dogs would reduce sand fly transmission thus lowering the incidence of zoonotic VL. Here we demonstrate that vaccination of dogs with a recombinant 14kDa polypeptide of L. infantum nuclear transport factor 2 (Li-ntf2) mixed with adjuvant BpMPLA-SE resulted in the production of specific anti-Li-ntf2 IgG antibodies as well as IFN-γ release by the animals' peripheral blood mononuclear cells stimulated with the antigen. In addition, immunization with this single and small 14kDa poplypeptide resulted in protracted progression of the infection of the animals after challenging with a high dose of virulent L. infantum. Five months after challenge the parasite load was lower in the bone marrow of immunized dogs compared to non-immunized animals. The antibody response to K39, a marker of active VL, at ten months after challenge was strong and significantly higher in the control dogs than in vaccinated animals. At the study termination vaccinated animals showed significantly more liver granulomas and lymphoid hyperplasia than non-vaccinated animals, which are both histological markers of resistance to infection. Together, these results indicate that the 14kDa polypeptide is an attractive protective molecule that can be easily incorporated in a leishmanial polyprotein vaccine candidate to augment/complement the overall protective efficacy of the final product.

17.
Dis Model Mech ; 8(9): 1141-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26204894

RESUMO

Pulmonary tuberculosis (TB) is caused by Mycobacterium tuberculosis in susceptible humans. Here, we infected Diversity Outbred (DO) mice with ∼100 bacilli by aerosol to model responses in a highly heterogeneous population. Following infection, 'supersusceptible', 'susceptible' and 'resistant' phenotypes emerged. TB disease (reduced survival, weight loss, high bacterial load) correlated strongly with neutrophils, neutrophil chemokines, tumor necrosis factor (TNF) and cell death. By contrast, immune cytokines were weak correlates of disease. We next applied statistical and machine learning approaches to our dataset of cytokines and chemokines from lungs and blood. Six molecules from the lung: TNF, CXCL1, CXCL2, CXCL5, interferon-γ (IFN-γ), interleukin 12 (IL-12); and two molecules from blood - IL-2 and TNF - were identified as being important by applying both statistical and machine learning methods. Using molecular features to generate tree classifiers, CXCL1, CXCL2 and CXCL5 distinguished four classes (supersusceptible, susceptible, resistant and non-infected) from each other with approximately 77% accuracy using completely independent experimental data. By contrast, models based on other molecules were less accurate. Low to no IFN-γ, IL-12, IL-2 and IL-10 successfully discriminated non-infected mice from infected mice but failed to discriminate disease status amongst supersusceptible, susceptible and resistant M.-tuberculosis-infected DO mice. Additional analyses identified CXCL1 as a promising peripheral biomarker of disease and of CXCL1 production in the lungs. From these results, we conclude that: (1) DO mice respond variably to M. tuberculosis infection and will be useful to identify pathways involving necrosis and neutrophils; (2) data from DO mice is suited for machine learning methods to build, validate and test models with independent data based solely on molecular biomarkers; (3) low levels of immunological cytokines best indicate a lack of exposure to M. tuberculosis but cannot distinguish infection from disease.


Assuntos
Pulmão/patologia , Neutrófilos/metabolismo , Tuberculose/sangue , Tuberculose/patologia , Animais , Biomarcadores/sangue , Quimiocina CXCL1/sangue , Quimiocina CXCL2/sangue , Quimiocina CXCL5/sangue , Quimiocinas/sangue , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Interferon gama/sangue , Aprendizado de Máquina , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis , Necrose , Fator de Necrose Tumoral alfa/sangue
18.
J Am Vet Med Assoc ; 246(2): 231-5, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25554940

RESUMO

CASE DESCRIPTION: A 2-year-old Morgan mare was evaluated because of a corneal ulceration. CLINICAL FINDINGS: An irregular, deep stromal corneal ulcer in an area of malacia was noted in the left eye. Hypopyon was present in the ventral portion of the anterior chamber with moderate aqueous flare. The nictitating membrane of the left eye had hairs originating from its leading edge that contacted the corneal surface. TREATMENT AND OUTCOME: General anesthesia was induced, and a bulbar pedicle conjunctival graft was performed. The conjunctiva at the leading edge of the nictitating membrane, including the aberrant hair follicles, was excised. Microscopically, a nonkeratinized stratified squamous epithelium, sebaceous glands, and hair shafts were present, confirming a choristoma of pilosebaceous origin at the leading edge of the nictitating membrane. Six weeks after surgery, the horse had no signs of discomfort, with no regrowth of the hairs; no loss of vision was evident. CLINICAL RELEVANCE: Ocular choristomas develop secondary to defective fetal cellular differentiation and are rarely reported in the equine literature. The choristoma in this horse contained ectopic hair follicles with hair growth as well as sebaceous glands. This finding emphasizes the importance of a thorough adnexal examination in horses with corneal disease.


Assuntos
Coristoma/veterinária , Úlcera da Córnea/veterinária , Cabelo , Doenças dos Cavalos/diagnóstico , Membrana Nictitante/anormalidades , Animais , Coristoma/cirurgia , Úlcera da Córnea/etiologia , Feminino , Doenças dos Cavalos/patologia , Doenças dos Cavalos/cirurgia , Cavalos , Membrana Nictitante/cirurgia
19.
Infect Immun ; 83(1): 286-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368111

RESUMO

Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid heavy-chain-only VH domain (VHH)-based neutralizing agent (VNA) targeting Stx1 and Stx2 (VNA-Stx) protected mice from Stx1 and Stx2 intoxication. Here we report that a single intramuscular (i.m.) injection of a nonreplicating adenovirus (Ad) vector carrying a secretory transgene of VNA-Stx (Ad/VNA-Stx) protected mice challenged with Stx2 and protected gnotobiotic piglets infected with STEC from fatal systemic intoxication. One i.m. dose of Ad/VNA-Stx prevented fatal central nervous system (CNS) symptoms in 9 of 10 animals when it was given to piglets 24 h after bacterial challenge and in 5 of 9 animals when it was given 48 h after bacterial challenge, just prior to the onset of CNS symptoms. All 6 placebo animals died or were euthanized with severe CNS symptoms. Ad/VNA-Stx treatment had no impact on diarrhea. In conclusion, Ad/VNA-Stx treatment is effective in protecting piglets from fatal Stx2-mediated CNS complications following STEC challenge. With a low production cost and further development, this could presumably be an effective treatment for patients with HUS and/or individuals at high risk of developing HUS due to exposure to STEC.


Assuntos
Adenovírus Humanos/genética , Anticorpos Neutralizantes/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli O157/imunologia , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Toxina Shiga I/antagonistas & inibidores , Toxina Shiga II/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/genética , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Feminino , Vetores Genéticos , Síndrome Hemolítico-Urêmica/imunologia , Síndrome Hemolítico-Urêmica/microbiologia , Injeções Intramusculares , Camundongos , Toxina Shiga I/imunologia , Toxina Shiga II/imunologia , Análise de Sobrevida , Suínos , Fatores de Tempo
20.
Am J Pathol ; 184(12): 3170-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25451154

RESUMO

During tuberculosis (TB), some Mycobacterium tuberculosis bacilli persist in the presence of an active immunity and antibiotics that are used to treat the disease. Herein, by using the Cornell model of TB persistence, we further explored our recent finding that suggested that M. tuberculosis can escape therapy by residing in the bone marrow (BM) mesenchymal stem cells. We initially showed that M. tuberculosis rapidly disseminates to the mouse BM after aerosol exposure and maintained a stable burden for at least 220 days. In contrast, in the lungs, the M. tuberculosis burden peaked at 28 days and subsequently declined approximately 10-fold. More important, treatment of the mice with the antibiotics rifampicin and isoniazid, as expected, resulted in effective clearance of M. tuberculosis from the lungs and spleen. In contrast, M. tuberculosis persisted, albeit at low numbers, in the BM of antibiotic-treated mice. Moreover, most viable M. tuberculosis was recovered from the bone marrow CD271(+)CD45(-)-enriched cell fraction, and only few viable bacteria could be isolated from the CD271(-)CD45(+) cell fraction. These results clearly show that BM mesenchymal stem cells provide an antibiotic-protective niche for M. tuberculosis and suggest that unraveling the mechanisms underlying this phenomenon will enhance our understanding of M. tuberculosis persistence in treated TB patients.


Assuntos
Antibacterianos/uso terapêutico , Células da Medula Óssea/microbiologia , Células-Tronco Mesenquimais/microbiologia , Mycobacterium tuberculosis/patogenicidade , Adapaleno , Animais , Antituberculosos/uso terapêutico , Medula Óssea/microbiologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Feminino , Humanos , Isoniazida/uso terapêutico , Antígenos Comuns de Leucócito/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/efeitos dos fármacos , Naftalenos/metabolismo , Rifampina/uso terapêutico , Baço/microbiologia , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA