Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Commun Med (Lond) ; 4(1): 128, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956268

RESUMO

BACKGROUND: Human carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is an inhibitory cell surface protein that functions through homophilic and heterophilic ligand binding. Its expression on immune cells in human tumors is poorly understood. METHODS: An antibody that distinguishes human CEACAM1 from other highly related CEACAM family members was labeled with 159Tb and inserted into a panel of antibodies that included specificity for programmed cell death protein 1 (PD1) and PD-L1, which are targets of immunotherapy, to gain a data-driven immune cell atlas using cytometry by time-of-flight (CyTOF). A detailed inventory of CEACAM1, PD1, and PD-L1 expression on immune cells in metastatic lesions to lymph node or soft tissues and peripheral blood samples from patients with treatment-naive and -resistant melanoma as well as peripheral blood samples from healthy controls was performed. RESULTS: CEACAM1 is absent or at low levels on healthy circulating immune cells but is increased on immune cells in peripheral blood and tumors of melanoma patients. The majority of circulating PD1-positive NK cells, innate T cells, B cells, monocytic cells, dendritic cells, and CD4+ T cells in the peripheral circulation of treatment-resistant disease co-express CEACAM1 and are demonstrable as discrete populations. CEACAM1 is present on distinct types of cells that are unique to the tumor microenvironment and exhibit expression levels that are highest in treatment resistance; this includes tumor-infiltrating CD8+ T cells. CONCLUSIONS: To the best of our knowledge, this work represents the first comprehensive atlas of CEACAM1 expression on immune cells in a human tumor and reveals an important correlation with treatment-resistant disease. These studies suggest that agents targeting CEACAM1 may represent appropriate partners for PD1-related pathway therapies.


Some proteins, such as programmed cell death protein 1 (PD1), can stop the immune system from attacking cancer cells, allowing cancers to grow. Therapies targeting these proteins can be highly effective, but tumors can become resistant. It is important to identify factors involved in this resistance to develop improved cancer therapies. Human carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is a protein that inhibits an immune response and its levels have been associated with poor patient outcomes. We applied a method that allows for the detection of proteins on a single cell to uncover CEACAM1 patterns in melanoma. We found that increased CEACAM1 expression levels on multiple different immune cell types was associated with tumors that were resistant to therapy. These findings may help us to understand the role of CEACAM1 in cancer and to develop better cancer therapies.

2.
Mol Cell Biol ; 44(7): 261-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828991

RESUMO

The protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1) plays an important role in modulating glucose and lipid homeostasis. We previously suggested a potential role of SHP-1 in the regulation of peroxisome proliferator-activated receptor γ2 (PPARγ2) expression and activity but the mechanisms were unexplored. PPARγ2 is the master regulator of adipogenesis, but how its activity is regulated by tyrosine phosphorylation is largely unknown. Here, we found that SHP-1 binds to PPARγ2 primarily via its N-terminal SH2-domain. We confirmed the phosphorylation of PPARγ2 on tyrosine-residue 78 (Y78), which was reduced by SHP-1 in vitro resulting in decreased PPARγ2 stability. Loss of SHP-1 led to elevated, agonist-induced expression of the classical PPARγ2 targets FABP4 and CD36, concomitant with increased lipid content in cells expressing PPARγ2, an effect blunted by abrogation of PPARγ2 phosphorylation. Collectively, we discovered that SHP-1 affects the stability of PPARγ2 through dephosphorylation thereby influencing adipogenesis.


Assuntos
Adipogenia , PPAR gama , Proteína Tirosina Fosfatase não Receptora Tipo 6 , PPAR gama/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fosforilação , Humanos , Animais , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Células HEK293 , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Estabilidade Proteica , Células 3T3-L1 , Domínios de Homologia de src , Ligação Proteica
3.
Oncogene ; 41(11): 1563-1575, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091681

RESUMO

We investigated the role of the NFE2L3 transcription factor in inflammation-induced colorectal cancer. Our studies revealed that Nfe2l3-/- mice exhibit significantly less inflammation in the colon, reduced tumor size and numbers, and skewed localization of tumors with a more pronounced decrease of tumors in the distal colon. CIBERSORT analysis of RNA-seq data from normal and tumor tissue predicted a reduction in mast cells in Nfe2l3-/- animals, which was confirmed by toluidine blue staining. Concomitantly, the transcript levels of Il33 and Rab27a, both important regulators of mast cells, were reduced and increased, respectively, in the colorectal tumors of Nfe2l3-/- mice. Furthermore, we validated NFE2L3 binding to the regulatory sequences of the IL33 and RAB27A loci in human colorectal carcinoma cells. Using digital spatial profiling, we found that Nfe2l3-/- mice presented elevated FOXP3 and immune checkpoint markers CTLA4, TIM3, and LAG3, suggesting an increase in Treg counts. Staining for CD3 and FOXP3 confirmed a significant increase in immunosuppressive Tregs in the colon of Nfe2l3-/- animals. Also, Human Microbiome Project (HMP2) data showed that NFE2L3 transcript levels are higher in the rectum of ulcerative colitis patients. The observed changes in the tumor microenvironment provide new insights into the molecular differences regarding colon cancer sidedness. This may be exploited for the treatment of early-onset colorectal cancer as this emerging subtype primarily displays distal/left-sided tumors.


Assuntos
Neoplasias Colorretais , Microambiente Tumoral , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neoplasias Colorretais/genética , Fatores de Transcrição Forkhead , Humanos , Inflamação/genética , Interleucina-33 , Camundongos , Linfócitos T Reguladores , Microambiente Tumoral/genética
4.
J Immunol ; 204(8): 2285-2294, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169849

RESUMO

Neutrophils promote tumor growth and metastasis at multiple stages of cancer progression. One mechanism through which this occurs is via release of neutrophil extracellular traps (NETs). We have previously shown that NETs trap tumor cells in both the liver and the lung, increasing their adhesion and metastasis following postoperative complications. Multiple studies have since shown that NETs play a role in tumor progression and metastasis. NETs are composed of nuclear DNA-derived web-like structures decorated with neutrophil-derived proteins. However, it is unknown which, if any, of these NET-affiliated proteins is responsible for inducing the metastatic phenotype. In this study, we identify the NET-associated carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) as an essential element for this interaction. Indeed, blocking CEACAM1 on NETs, or knocking it out in a murine model, leads to a significant decrease in colon carcinoma cell adhesion, migration and metastasis. Thus, this work identifies NET-associated CEACAM1 as a putative therapeutic target to prevent the metastatic progression of colon carcinoma.


Assuntos
Antígenos CD/metabolismo , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , Células A549 , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Células HT29 , Humanos , Camundongos , Neutrófilos/patologia
5.
Sci Rep ; 9(1): 18897, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827213

RESUMO

The mechanisms linking chronic inflammation of the gut (IBD) and increased colorectal cancer susceptibility are poorly understood. IBD risk is influenced by genetic factors, including the IBD5 locus (human 5q31), that harbors the IRF1 gene. A cause-to-effect relationship between chronic inflammation and colorectal cancer, and a possible role of IRF1 were studied in Irf1-/- mice in a model of colitis-associated colorectal cancer (CA-CRC) induced by azoxymethane and dextran sulfate. Loss of Irf1 causes hyper-susceptibility to CA-CRC, with early onset and increased number of tumors leading to rapid lethality. Transcript profiling (RNA-seq) and immunostaining of colons shows heightened inflammation and enhanced enterocyte proliferation in Irf1-/- mutants, prior to appearance of tumors. Considerable infiltration of leukocytes is seen in Irf1-/- colons at this early stage, and is composed primarily of proinflammatory Gr1+ Cd11b+ myeloid cells and other granulocytes, as well as CD4+ lymphoid cells. Differential susceptibility to CA-CRC of Irf1-/- vs. B6 controls is fully transferable through hematopoietic cells as observed in bone marrow chimera studies. Transcript signatures seen in Irf1-/- mice in response to AOM/DSS are enriched in clinical specimens from patients with IBD and with colorectal cancer. In addition, IRF1 expression in the colon is significantly decreased in late stage colorectal cancer (stages 3, 4) and is associated with poorer prognosis. This suggests that partial or complete loss of IRF1 expression alters the type, number, and function of immune cells in situ during chronic inflammation, possibly via the creation of a tumor-promoting environment.


Assuntos
Colite/metabolismo , Neoplasias Colorretais/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Animais , Colite/complicações , Colite/genética , Colite/patologia , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Fator Regulador 1 de Interferon/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout
7.
Oncotarget ; 8(61): 104330-104346, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262644

RESUMO

We have shown that carcinoembryonic antigen cell adhesion molecule 1 long isoform (CEACAM1-L) expression in MC38 metastatic colorectal cancer (CRC) cells results in liver metastasis inhibition via CCL2 and STAT3 signaling. But other molecular mechanisms orchestrating CEACAM1-L-mediated metastasis inhibition remain to be defined. We screened a panel of mouse and human CRC cells and evaluated their metastatic outcome after CEACAM1 overexpression or downregulation. An unbiased transcript profiling and a phospho-receptor tyrosine kinase screen comparing MC38 CEACAM1-L-expressing and non-expressing (CT) CRC cells revealed reduced ephrin type-A receptor 2 (EPHA2) expression and activity. An EPHA2-specific inhibitor reduced EPHA2 downstream signaling in CT cells similar to that in CEACAM1-L cells with decreased proliferation and migration. Human CRC patients exhibiting high CEACAM1 in combination with low EPHA2 expression benefited from longer time to first recurrence/metastasis compared to those with high EPHA2 expression. With the added interaction of CEACAM6, we denoted that CEACAM1 high- and EPHA2 low-expressing patient samples with lower CEACAM6 expression also exhibited a longer time to first recurrence/metastasis. In HT29 human CRC cells, down-regulation of CEACAM1 along with CEA and CEACAM6 up-regulation led to higher metastatic burden. Overall, CEACAM1-L expression in poorly differentiated CRC can inhibit liver metastasis through cell context-dependent EPHA2-mediated signaling. However, CEACAM1's role should be considered in the presence of other CEACAM family members.

8.
Clin Exp Metastasis ; 34(5): 351-361, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28758175

RESUMO

Portal vein embolization (PVE) can be required to stimulate liver regeneration before hepatectomy for colorectal liver metastasis (CRCLM), however PVE may also trigger CRCLM progression in patients initially exhibiting chemotherapy response. Using RNA-seq, we aimed to determine the molecular networks involved in metastatic progression in this context. A prospective study including all CRCLM patients undergoing PVE prior to hepatectomy was conducted. Paired biopsies of metastatic lesions were obtained prior to and after PVE and total RNA was isolated and used to prepare Illumina rRNA-depleted TruSeq stranded cDNA libraries for HiSeq 100 bp paired-end sequencing. Patients were classified with progression of disease (PDPVE) or stable disease (SDPVE) post-PVE using 3D-CT tumor volumetric analysis. RESULTS: Twenty patients were included, 13 (65.0%) in the PDPVE group (median 58.0% (18.6-234.3) increase in tumor volume) and 7 (35.0%) in the SDPVE group exhibiting continuous chemotherapy response (median -14.3% (-40.8 to -2.8) decrease in tumor volume) (p < 0.0001). Our results showed that progressive CRCLM after PVE undergo gene expression changes that indicate activation of core cancer pathways (IL-17 (p = 5.94 × 10-03), PI3K (p = 8.71 × 10-03), IL6 and IGF-1 signaling pathways), consistent with changes driven by cytokines and growth factors. Differential expression analysis in a paired model of progression (EdgeR, DeSeq) identified significantly dysregulated genes in the PDPVE group (FOS, FOSB, RAB20, IRS2). CONCLUSION: Differentially expressed genes and pathways with known links to cancer and metastasis were identified post-PVE in patients with disease progression. Highlighting these molecular changes is a crucial first step towards development of targeted therapeutic strategies that may mitigate the effects of PVE on tumor growth.


Assuntos
Neoplasias Colorretais/metabolismo , Embolização Terapêutica , Neoplasias Hepáticas/metabolismo , Idoso , Quimioterapia Adjuvante , Neoplasias Colorretais/secundário , Neoplasias Colorretais/terapia , Terapia Combinada , Progressão da Doença , Feminino , Hepatectomia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Regeneração Hepática , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Estudos Prospectivos , Análise de Sequência de RNA , Transcriptoma
9.
Oncoimmunology ; 6(7): e1328336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28811966

RESUMO

CEACAM1 is an extensively studied cell surface molecule with established functions in multiple cancer types, as well as in various compartments of the immune system. Due to its multi-faceted role as a recently appreciated immune checkpoint inhibitor and tumor marker, CEACAM1 is an attractive target for cancer immunotherapy. Herein, we highlight CEACAM1's function in various immune compartments and cancer types, including in the context of metastatic disease. This review outlines CEACAM1's role as a therapeutic target for cancer treatment in light of these properties.

10.
Mol Carcinog ; 56(3): 1030-1040, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27597531

RESUMO

The common R653Q variant (∼20% homozygosity in Caucasians) in the synthetase domain of the folate-metabolizing enzyme MTHFD1 reduces purine synthesis. Although this variant does not appear to affect risk for colorectal cancer, we questioned whether it would affect growth of colorectal tumors. We induced tumor formation in a mouse model for MTHFD1-synthetase deficiency (Mthfd1S+/- ) using combined administration of azoxymethane (AOM) and dextran sodium sulfate (DSS) in male and female wild-type and Mthfd1S+/- mice. Tumor size was significantly smaller in MthfdS+/- mice, particularly in males. A reduction in the proliferation of MthfdS+/- mouse embryonic fibroblast cell lines, compared with wild-type lines, was also observed. Tumor number was not influenced by genotype. The amount of inflammation observed within tumors from male Mthfd1S+/- mice was lower than that in wild-type mice. Gene expression analysis in tumor adjacent normal (pre-neoplastic) tissue identified several genes involved in proliferation (Fosb, Fos, Ptk6, Esr2, Atf3) and inflammation (Atf3, Saa1, TNF-α) that were downregulated in MthfdS+/- males. In females, MthfdS+/- genotype was not associated with these gene expression changes, or with differences in tumor inflammation. These findings suggest that the mechanisms directing tumor growth differ significantly between males and females. We suggest that restriction of purine synthesis, reduced expression of genes involved in proliferation, and/or reduced inflammation lead to slower tumor growth in MTHFD1-synthetase deficiency. These findings may have implications for CRC tumor growth and prognosis in individuals with the R653Q variant. © 2016 Wiley Periodicals, Inc.


Assuntos
Aminoidrolases/deficiência , Neoplasias Colorretais/patologia , Formiato-Tetra-Hidrofolato Ligase/deficiência , Meteniltetra-Hidrofolato Cicloidrolase/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Antígenos de Histocompatibilidade Menor/genética , Complexos Multienzimáticos/deficiência , Enzimas Multifuncionais/deficiência , Polimorfismo de Nucleotídeo Único , Animais , Azoximetano/efeitos adversos , Proliferação de Células , Células Cultivadas , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Sulfato de Dextrana/efeitos adversos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos
11.
Nat Nanotechnol ; 11(11): 941-947, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27525475

RESUMO

Oxygen-depleted hypoxic regions in the tumour are generally resistant to therapies. Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour of magnetotactic bacteria, Magnetococcus marinus strain MC-1 (ref. 4), can be used to transport drug-loaded nanoliposomes into hypoxic regions of the tumour. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals, tend to swim along local magnetic field lines and towards low oxygen concentrations based on a two-state aerotactic sensing system. We show that when MC-1 cells bearing covalently bound drug-containing nanoliposomes were injected near the tumour in severe combined immunodeficient beige mice and magnetically guided, up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell. Our results suggest that harnessing swarms of microorganisms exhibiting magneto-aerotactic behaviour can significantly improve the therapeutic index of various nanocarriers in tumour hypoxic regions.


Assuntos
Alphaproteobacteria , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Compostos Férricos , Campos Magnéticos , Nanopartículas/química , Neoplasias Experimentais/tratamento farmacológico , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Células HCT116 , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Hipóxia/patologia , Camundongos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Oncotarget ; 7(44): 71651-71659, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27690217

RESUMO

The expression and activities of RNA binding proteins are frequently dysregulated in human cancer. Their roles, however, appears to be complex, with reports indicating both pro-tumorigenic and tumor suppressive functions. Here we show, using two classical mouse cancer models, that the role of KH-type RNA binding protein, Sam68, in tumor development can be influenced by the status of the p53 tumor suppressor. We demonstrate that in mice expressing wild type p53, Sam68-deficiency resulted in a higher incidence and malignancy of carcinogen-induced tumors, suggesting a tumor suppressive role for Sam68. In marked contrast, Sam68-haploinsufficiency significantly delayed the onset of tumors in mice lacking p53 and prolonged their survival, indicating that Sam68 accelerates the development of p53-deficient tumors. These findings provide considerable insight into a previously unknown relationship between Sam68 and the p53 tumor suppressor in tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Carcinogênese , Proteínas de Ligação a RNA/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Azoximetano , Haploinsuficiência , Camundongos , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/análise
13.
Oncotarget ; 7(39): 63730-63746, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27572314

RESUMO

We analyzed the molecular basis for carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1)-controlled inhibition of epithelial-mesenchymal transition (EMT) in a mouse model for mammary adenocarcinoma (WAP-T mice). We demonstrate that silencing of CEACAM1 in WAP-T tumor-derived G-2 cells induces epithelial-mesenchymal plasticity (EMP), as evidenced by typical changes of gene expression, morphology and increased invasion. In contrast, reintroduction of CEACAM1 into G-2 cells reversed up-regulation of genes imposing mesenchymal transition, as well as cellular invasion. We identified the Wnt-pathway as target for CEACAM1-mediated repression of EMT. Importantly, ß-catenin phosphorylation status and transcriptional activity strongly depend on CEACAM1 expression: CEACAM1high G-2 cells displayed enhanced phosphorylation of ß-catenin at S33/S37/T41 and decreased phosphorylation at Y86, thereby inhibiting canonical Wnt/ß-catenin signaling. We identified Src-homology 2 domain-containing phosphatase 2 (SHP-2) as a critical binding partner of CEACAM1 that could modulate ß-catenin Y86 phosphorylation. Hence, CEACAM1 serves as a scaffold that controls membrane proximal ß-catenin signaling. In vivo, mammary tumors of WAP-T/CEACAM1null mice displayed increased nuclear translocation of ß-catenin and a dramatically enhanced metastasis rate compared to WAP-T mice. Hence, CEACAM1 controls EMT in vitro and in vivo by site-specific regulation of ß-catenin phosphorylation. Survival analyses of human mammary carcinoma patients corroborated these data, indicating that CEACAM1 is a prognostic marker for breast cancer survival.


Assuntos
Neoplasias da Mama/metabolismo , Antígeno Carcinoembrionário/metabolismo , Carcinoma/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Experimentais/metabolismo , Animais , Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Técnicas In Vitro , Neoplasias Mamárias Experimentais/patologia , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Fenótipo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais , Regulação para Cima , beta Catenina/metabolismo
14.
PLoS One ; 11(4): e0153933, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100181

RESUMO

Mutational processes and signatures that drive early tumorigenesis are centrally important for early cancer prevention. Yet, to date, biomarkers and risk factors for polyps (adenomas) that inordinately and rapidly develop into colon cancer remain poorly defined. Here, we describe surprisingly high mutational profiles through whole-genome sequence (WGS) analysis in 2 of 4 pairs of benign colorectal adenoma tissue samples. Unsupervised hierarchical clustered transcriptomic analysis of a further 7 pairs of adenomas reveals distinct mutational signatures regardless of adenoma size. Transitional single nucleotide substitutions of C:G>T:A predominate in the adenoma mutational spectrum. Strikingly, we observe mutations in the TGF-ß pathway and CEA-associated genes in 4 out of 11 adenomas, overlapping with the Wnt pathway. Immunohistochemical labeling reveals a nearly 5-fold increase in CEA levels in 23% of adenoma samples with a concomitant loss of TGF-ß signaling. We also define a functional role by which the CEA B3 domain interacts with TGFBR1, potentially inactivating the tumor suppressor function of TGF-ß signaling. Our study uncovers diverse mutational processes underlying the transition from early adenoma to cancer. This has broad implications for biomarker-driven targeting of CEA/TGF-ß in high-risk adenomas and may lead to early detection of aggressive adenoma to CRC progression.


Assuntos
Adenoma/genética , Antígeno Carcinoembrionário/genética , Colo/metabolismo , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Mutação/genética , Fator de Crescimento Transformador beta/genética , Adenoma/metabolismo , Adenoma/patologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Antígeno Carcinoembrionário/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Progressão da Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
15.
Mamm Genome ; 27(5-6): 213-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26979842

RESUMO

Inbred strains of mice differ in susceptibility to colitis-associated colorectal cancer (CA-CRC). We tested 10 inbred strains of mice for their response to azoxymethane/dextran sulfate sodium-induced CA-CRC and identified a bimodal inter-strain distribution pattern when tumor multiplicity was used as a phenotypic marker of susceptibility. The FVB/NJ strain was particularly susceptible showing a higher tumor burden than any other susceptible strains (12.5-week post-treatment initiation). FVB/NJ hyper-susceptibility was detected as early as 8-week post-treatment initiation with FVB/NJ mice developing 5.5-fold more tumors than susceptible A/J or resistant B6 control mice. Linkage analysis by whole genome scan in informative (FVB/NJ×C3H/HeJ)F2 mice identified a novel susceptibility locus designated as C olon c ancer s usceptibility 6 (Ccs6) on proximal mouse chromosome 6. When gender was used as a covariate, a LOD score of 5.4 was computed with the peak marker being positioned at rs13478727, 43.8 Mbp. Mice homozygous for FVB/NJ alleles at this locus had increased tumor multiplicity compared to homozygous C3H/HeJ mice. Positional candidates in this region of chromosome 6 were analyzed with respect to a possible role in carcinogenesis and a role in inflammatory response using a new epigenetic gene scoring tool (Myeloid Inflammation Score).


Assuntos
Colite/genética , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Animais , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Colite/complicações , Colite/patologia , Neoplasias Colorretais/complicações , Neoplasias Colorretais/patologia , Ligação Genética , Homozigoto , Humanos , Camundongos , Fenótipo
16.
Gut ; 65(5): 821-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25666195

RESUMO

OBJECTIVE: Nearly 20%-29% of patients with colorectal cancer (CRC) succumb to liver or lung metastasis and there is a dire need for novel targets to improve the survival of patients with metastasis. The long isoform of the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1-L or CC1-L) is a key regulator of immune surveillance in primary CRC, but its role in metastasis remains largely unexplored. We have examined how CC1-L expression impacts on colon cancer liver metastasis. DESIGN: Murine MC38 transfected with CC1-L were evaluated in vitro for proliferation, migration and invasion, and for in vivo experimental liver metastasis. Using shRNA silencing or pharmacological inhibition, we delineated the role in liver metastasis of Chemokine (C-C motif) Ligand 2 (CCL2) and Signal Transducer and Activator of Transcription 3 (STAT3) downstream of CC1-L. We further assessed the clinical relevance of these findings in a cohort of patients with CRC. RESULTS: MC38-CC1-L-expressing cells exhibited significantly reduced in vivo liver metastasis and displayed decreased CCL2 chemokine secretion and reduced STAT3 activity. Down-modulation of CCL2 expression and pharmacological inhibition of STAT3 activity in MC38 cells led to reduced cell invasion capacity and decreased liver metastasis. The clinical relevance of our findings is illustrated by the fact that high CC1 expression in patients with CRC combined with some inflammation-regulated and STAT3-regulated genes correlate with improved 10-year survival. CONCLUSIONS: CC1-L regulates inflammation and STAT3 signalling and contributes to the maintenance of a less-invasive CRC metastatic phenotype of poorly differentiated carcinomas.


Assuntos
Antígenos CD/fisiologia , Moléculas de Adesão Celular/fisiologia , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , Animais , Diferenciação Celular , Neoplasias Colorretais/patologia , Feminino , Humanos , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Isoformas de Proteínas/fisiologia , Células Tumorais Cultivadas
17.
Platelets ; 27(2): 168-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26196244

RESUMO

Previous studies have implicated that the Ig-ITIM superfamily member, CEACAM1 may regulate integrin function. While CEACAM1 has been demonstrated to play a role as an inhibitory co-receptor of ITAM-associated GPVI/FcR γ-chain signaling pathways in platelets, its physiologic role in integrin αIIbß3-mediated platelet function is unclear. In this study, we investigate the functional importance of Ceacam1 in murine platelets. We show that CEACAM1 is constitutively associated with integrin αIIbß3 in resting human and mouse platelets as demonstrated by co-immunoprecipitation studies. Using Ceacam1-deficient mice, we show that they have prolonged tail bleeding times and volume of blood lost that is corrected by reconstitution with platelet Ceacam1. Ceacam1(-/-) platelets have moderate integrin αIIbß3 mediated functional defects with impaired kinetics of platelet spreading on fibrinogen and failure to retract fibrin clots in vitro. This functional integrin αIIbß3 defect could not be attributed to altered integrin αIIbß3 expression. Ceacam1(-/-) platelets displayed normal "inside-out" signaling properties as demonstrated by normal agonist-induced binding of soluble (fluorescein isothiocyanate) FITC-fibrinogen, JON/A antibody binding, and increases in cytosolic free calcium levels. This study provides direct evidence that Ceacam1 is essential for normal integrin αIIbß3-mediated platelet function and that disruption of mouse Ceacam1 induced moderate integrin αIIbß3-mediated functional defects.


Assuntos
Plaquetas/metabolismo , Antígeno Carcinoembrionário/sangue , Fibrina/metabolismo , Fibrinogênio/metabolismo , Integrina alfa2/sangue , Animais , Tempo de Sangramento , Coagulação Sanguínea , Plaquetas/patologia , Cálcio/sangue , Antígeno Carcinoembrionário/genética , Retração do Coágulo , Fibrina/genética , Fibrinogênio/genética , Expressão Gênica , Humanos , Integrina alfa2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
18.
World J Gastroenterol ; 21(41): 11688-99, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26556996

RESUMO

Colitis-associated colorectal cancer (CA-CRC) is the cause of death in 10%-15% of inflammatory bowel disease (IBD) patients. CA-CRC results from the accumulation of mutations in intestinal epithelial cells and progresses through a well-characterized inflammation to dysplasia to carcinoma sequence. Quantitative estimates of overall CA-CRC risks are highly variable ranging from 2% to 40% depending on IBD severity, duration and location, with IBD duration being the most significant risk factor associated with CA-CRC development. Recently, studies have identified IBD patients with similar patterns of colonic inflammation, but that differ with respect to CA-CRC development, suggesting a role for additional non-inflammatory risk factors in CA-CRC development. One suggestion is that select IBD patients carry polymorphisms in various low penetrance disease susceptibility genes, which pre-dispose them to CA-CRC development, although these loci have proven difficult to identify in human genome-wide association studies. Mouse models of CA-CRC have provided a viable alternative for the discovery, validation and study of individual genes in CA-CRC pathology. In this review, we summarize the current CA-CRC literature with a strong focus on genetic pre-disposition and highlight an emerging role for mouse models in the search for CA-CRC risk alleles.


Assuntos
Transformação Celular Neoplásica/genética , Colite/genética , Neoplasias do Colo/genética , Animais , Transformação Celular Neoplásica/imunologia , Colite/epidemiologia , Colite/imunologia , Neoplasias do Colo/epidemiologia , Neoplasias do Colo/imunologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Camundongos , Fenótipo , Fatores de Risco
19.
Immunity ; 43(4): 751-63, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26384545

RESUMO

The crosstalk between inflammation and tumorigenesis is now clearly established. However, how inflammation is elicited in the metastatic environment and the corresponding contribution of innate immunity pathways in suppressing tumor growth at secondary sites are poorly understood. Here, we show that mice deficient in Nlrp3 inflammasome components had exacerbated liver colorectal cancer metastatic growth, which was mediated by impaired interleukin-18 (IL-18) signaling. Control of tumor growth was independent of differential cancer cell colonization or proliferation, intestinal microbiota effects, or tumoricidal activity by the adaptive immune system. Instead, the inflammasome-IL-18 pathway impacted maturation of hepatic NK cells, surface expression of the death ligand FasL, and capacity to kill FasL-sensitive tumors. Our results define a regulatory signaling circuit within the innate immune system linking inflammasome activation to effective NK-cell-mediated tumor attack required to suppress colorectal cancer growth in the liver.


Assuntos
Adenocarcinoma/secundário , Proteínas de Transporte/fisiologia , Neoplasias Colorretais/patologia , Inflamassomos/fisiologia , Células Matadoras Naturais/imunologia , Neoplasias Hepáticas/secundário , Adenocarcinoma/imunologia , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteínas de Ligação ao Cálcio/deficiência , Caspase 1/deficiência , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Citotoxicidade Imunológica , Proteínas de Ligação a DNA/deficiência , Proteína Ligante Fas/fisiologia , Microbioma Gastrointestinal , Imunidade Inata , Vigilância Imunológica , Inflamassomos/deficiência , Interleucina-18/fisiologia , Interleucina-1beta/fisiologia , Neoplasias Hepáticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/fisiologia , Quimera por Radiação , Tolerância a Radiação , Microambiente Tumoral
20.
Nat Commun ; 6: 6217, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25692415

RESUMO

B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1(-/-) mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1(-/-) mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/citologia , Antígeno Carcinoembrionário/fisiologia , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Separação Celular , Sobrevivência Celular , Citometria de Fluxo , Regulação da Expressão Gênica , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Transdução de Sinais , Baço/metabolismo , Vesiculovirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA