RESUMO
Tumors with a pathogenic BRCA1/2 mutation are homologous recombination (HR)-deficient (HRD) and consequently sensitive to platinum-based chemotherapy and Poly-[ADP-Ribose]-Polymerase inhibitors (PARPi). We hypothesized that functional HR status better reflects real-time HR status than BRCA1/2 mutation status. Therefore, we determined the functional HR status of 53 breast cancer (BC) and 38 ovarian cancer (OC) cell lines by measuring the formation of RAD51 foci after irradiation. Discrepancies between functional HR and BRCA1/2 mutation status were investigated using exome sequencing, methylation and gene expression data from 50 HR-related genes. A pathogenic BRCA1/2 mutation was found in 10/53 (18.9%) of BC and 7/38 (18.4%) of OC cell lines. Among BRCA1/2-mutant cell lines, 14/17 (82.4%) were HR-proficient (HRP), while 1/74 (1.4%) wild-type cell lines was HRD. For most (80%) cell lines, we explained the discrepancy between functional HR and BRCA1/2 mutation status. Importantly, 12/14 (85.7%) BRCA1/2-mutant HRP cell lines were explained by mechanisms directly acting on BRCA1/2. Finally, functional HR status was strongly associated with COSMIC single base substitution signature 3, but not BRCA1/2 mutation status. Thus, the majority of BRCA1/2-mutant cell lines do not represent a suitable model for HRD. Moreover, exclusively determining BRCA1/2 mutation status may not suffice for platinum-based chemotherapy or PARPi patient selection.
RESUMO
Next generation sequencing of cell-free DNA (cfDNA) is a promising method for treatment monitoring and therapy selection in metastatic breast cancer (MBC). However, distinguishing tumor-specific variants from sequencing artefacts and germline variation with low false discovery rate is challenging when using large targeted sequencing panels covering many tumor suppressor genes. To address this, we built a machine learning model to remove false positive variant calls and augmented it with additional filters to ensure selection of tumor-derived variants. We used cfDNA of 70 MBC patients profiled with both the small targeted Oncomine breast panel (Thermofisher) and the much larger Qiaseq Human Breast Cancer Panel (Qiagen). The model was trained on the panels' common regions using Oncomine hotspot mutations as ground truth. Applied to Qiaseq data, it achieved 35% sensitivity and 36% precision, outperforming basic filtering. For 20 patients we used germline DNA to filter for somatic variants and obtained 245 variants in total, while our model found seven variants, of which six were also detected using the germline strategy. In ten tumor-free individuals, our method detected in total one (potentially germline) variant, in contrast to 521 variants detected without our model. These results indicate that our model largely detects somatic variants.
Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Humanos , Feminino , Neoplasias da Mama/genética , Ácidos Nucleicos Livres/genética , Mutação , Mama , Sequenciamento de Nucleotídeos em Larga Escala , Aprendizado de MáquinaRESUMO
Active surveillance instead of standard surgery after neoadjuvant chemoradiotherapy (nCRT) has been proposed for patients with oesophageal cancer. Circulating tumour DNA (ctDNA) may be used to facilitate selection of patients for surgery. We show that detection of ctDNA after nCRT seems highly suggestive of major residual disease. Tumour biopsies and blood samples were taken before, and 6 and 12 weeks after, nCRT. Biopsies were analysed with regular targeted next-generation sequencing (NGS). Circulating cell-free DNA (cfDNA) was analysed using targeted NGS with unique molecular identifiers and digital polymerase chain reaction. cfDNA mutations matching pre-treatment biopsy mutations confirmed the presence of ctDNA. In total, 31 patients were included, of whom 24 had a biopsy mutation that was potentially detectable in cfDNA (77%). Pre-treatment ctDNA was detected in nine of 24 patients (38%), four of whom had incurable disease progression before surgery. Pre-treatment ctDNA detection had a sensitivity of 47% (95% CI 24-71) (8/17), specificity of 85% (95% CI 42-99) (6/7), positive predictive value (PPV) of 89% (95% CI 51-99) (8/9), and negative predictive value (NPV) of 40% (95% CI 17-67) (6/15) for detecting major residual disease (>10% residue in the resection specimen or progression before surgery). After nCRT, ctDNA was detected in three patients, two of whom had disease progression. Post-nCRT ctDNA detection had a sensitivity of 21% (95% CI 6-51) (3/14), specificity of 100% (95% CI 56-100) (7/7), PPV of 100% (95% CI 31-100) (3/3), and NPV of 39% (95% CI 18-64) (7/18) for detecting major residual disease. The addition of ctDNA to the current set of diagnostics did not lead to more patients being clinically identified with residual disease. These results indicate that pre-treatment and post-nCRT ctDNA detection may be useful in identifying patients at high risk of disease progression. The addition of ctDNA analysis to the current set of diagnostic modalities may not improve detection of residual disease after nCRT. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
DNA Tumoral Circulante , Neoplasias Esofágicas , Humanos , DNA Tumoral Circulante/genética , Terapia Neoadjuvante/métodos , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Neoplasia Residual , Mutação , Progressão da Doença , Quimiorradioterapia/métodos , Biomarcadores Tumorais/genéticaRESUMO
BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) patients with positive AR-V7 expression in their circulating tumour cells (CTCs) rarely derive benefit from abiraterone and enzalutamide. DESIGN: We performed a prospective, multicenter, single arm phase II clinical trial (CABA-V7) in mCRPC patients previously treated with docetaxel and androgen deprivation therapy. OBJECTIVE: In this trial, we investigated whether cabazitaxel treatment resulted in clinically meaningful PSA response rates in patients with positive CTC-based AR-V7 expression and collected liquid biopsies for genomic profiling. RESULTS: Cabazitaxel was found to be modestly effective, with only 12% of these patients obtaining a PSA response. Genomic profiling revealed that CTC-based AR-V7 expression was not associated with other known mCRPC-associated alterations. CTC-based AR-V7 status and dichotomised CTC counts were observed as independent prognostic markers at baseline. CONCLUSIONS: AR-V7 positivity predicted poor overall survival (OS). However, cabazitaxel-treated AR-V7 positive patients and those lacking AR-V7 positivity, who received cabazitaxel as standard of care, appeared to have similar OS. Therefore, despite the low response rate, cabazitaxel may still be an effective treatment in this poor prognosis, AR-V7 positive patient population.
Assuntos
Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Antígeno Prostático Específico , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/uso terapêutico , Isoformas de Proteínas/genética , Células Neoplásicas Circulantes/patologia , Nitrilas/uso terapêuticoRESUMO
BACKGROUND: In breast cancer (BC), recurrent fusion genes of estrogen receptor alpha (ESR1) and AKAP12, ARMT1 and CCDC170 have been reported. In these gene fusions the ligand binding domain of ESR1 has been replaced by the transactivation domain of the fusion partner constitutively activating the receptor. As a result, these gene fusions can drive tumor growth hormone independently as been shown in preclinical models, but the clinical value of these fusions have not been reported. Here, we studied the prognostic and predictive value of different frequently reported ESR1 fusion transcripts in primary BC. METHODS: We evaluated 732 patients with primary BC (131 ESR1-negative and 601 ESR1-positive cases), including two ER-positive BC patient cohorts: one cohort of 322 patients with advanced disease who received first-line endocrine therapy (ET) (predictive cohort), and a second cohort of 279 patients with lymph node negative disease (LNN) who received no adjuvant systemic treatment (prognostic cohort). Fusion gene transcript levels were measured by reverse transcriptase quantitative PCR. The presence of the different fusion transcripts was associated, in uni- and multivariable Cox regression analysis taking along current clinico-pathological characteristics, to progression free survival (PFS) during first-line endocrine therapy in the predictive cohort, and disease- free survival (DFS) and overall survival (OS) in the prognostic cohort. RESULTS: The ESR1-CCDC170 fusion transcript was present in 27.6% of the ESR1-positive BC subjects and in 2.3% of the ESR1-negative cases. In the predictive cohort, none of the fusion transcripts were associated with response to first-line ET. In the prognostic cohort, the median DFS and OS were respectively 37 and 93 months for patients with an ESR1-CCDC170 exon 8 gene fusion transcript and respectively 91 and 212 months for patients without this fusion transcript. In a multivariable analysis, this ESR1-CCDC170 fusion transcript was an independent prognostic factor for DFS (HR) (95% confidence interval (CI): 1.8 (1.2-2.8), P = 0.005) and OS (HR (95% CI: 1.7 (1.1-2.7), P = 0.023). CONCLUSIONS: Our study shows that in primary BC only ESR1-CCDC170 exon 8 gene fusion transcript carries prognostic value. None of the ESR1 fusion transcripts, which are considered to have constitutive ER activity, was predictive for outcome in BC with advanced disease treated with endocrine treatment.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Receptor alfa de Estrogênio/genética , Fusão Gênica/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Estudos de Casos e Controles , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Estudos RetrospectivosRESUMO
BACKGROUND: Circulating tumour cell (CTC)-derived organoids have the potential to provide a powerful tool for personalised cancer therapy but are restrained by low CTC numbers provided by blood samples. Here, we used diagnostic leukapheresis (DLA) to enrich CTCs from patients with metastatic prostate cancer (mPCa) and explored whether organoids provide a platform for ex vivo treatment modelling. METHODS: We prospectively screened 102 patients with mPCa and performed DLA in 40 patients with ≥5 CTCs/7.5 mL blood. We enriched CTCs from DLA using white blood cell (WBC) depletion alone or combined with EpCAM selection. The enriched CTC samples were cultured in 3D to obtain organoids and used for downstream analyses. RESULTS: The DLA procedure resulted in a median yield of 5312 CTCs as compared with 22 CTCs in 7.5 mL of blood. Using WBC depletion, we recovered 46% of the CTCs, which reduced to 12% with subsequent EpCAM selection. From the isolated and enriched CTC samples, organoid expansion succeeded in 35%. Successful organoid cultures contained significantly higher CTC numbers at initiation. Moreover, we performed treatment modelling in one organoid cell line and identified substantial tumour heterogeneity in CTCs using single cell DNA sequencing. CONCLUSIONS: DLA is an efficient method to enrich CTCs, although the modest success rate of culturing CTCs precludes large scale clinical application. Our data do suggest that DLA and subsequent processing provides a rich source of viable tumour cells. Therefore, DLA offers a promising alternative to biopsy procedures to obtain sufficient number of tumour cells to study sequential samples in patients with mPCa. TRIAL REGISTRATION NUMBER: NL6019.
Assuntos
Separação Celular , Leucaférese , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , DNA de Neoplasias/genética , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/metabolismo , Organoides , Estudos Prospectivos , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Resultado do Tratamento , Células Tumorais CultivadasRESUMO
The aim of this study was to determine an optimal workflow to detect TP53 mutations in baseline and longitudinal serum cell free DNA (cfDNA) from high-grade serous ovarian carcinomas (HGSOC) patients and to define whether TP53 mutations are suitable as biomarker for disease. TP53 was investigated in tissue and archived serum from 20 HGSOC patients by a next-generation sequencing (NGS) workflow alone or combined with digital PCR (dPCR). AmpliSeq™-focused NGS panels and customized dPCR assays were used for tissue DNA and longitudinal cfDNAs, and Oncomine NGS panel with molecular barcoding was used for baseline cfDNAs. TP53 missense mutations were observed in 17 tissue specimens and in baseline cfDNA for 4/8 patients by AmpliSeq, 6/9 patients by Oncomine, and 4/6 patients by dPCR. Mutations in cfDNA were detected in 4/6 patients with residual disease and 3/4 patients with disease progression within six months, compared to 5/11 patients with no residual disease and 6/13 patients with progression after six months. Finally, mutations were detected at progression in 5/6 patients, but not during chemotherapy. NGS with molecular barcoding and dPCR were most optimal workflows to detect TP53 mutations in baseline and longitudinal serum cfDNA, respectively. TP53 mutations were undetectable in cfDNA during treatment but re-appeared at disease progression, illustrating its promise as a biomarker for disease monitoring.
Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Mutação de Sentido Incorreto , Neoplasias Ovarianas , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasia Residual , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genéticaRESUMO
BACKGROUND: The interpretation of the presence of AR-V7 in circulating tumour cells (CTCs) in men with metastatic castration-resistant prostate cancer (mCRPC) remains to be elucidated. AR-V7 may hold promise as a predictive biomarker, but there may be prognostic impact of AR-V7 positivity as well. To investigate the clinical value of AR-V7, we determined whether AR-V7 detection in CTCs in patients with mCRPC is associated with CTC counts and survival. METHODS: Between December 2011 and January 2019, three prospective clinical trials collected clinical data of patients with mCRPC, who progressed after docetaxel and/or enzalutamide or abiraterone. Baseline (and follow-up) blood samples were withdrawn determining CTC count and AR-V7 expression. The majority of patients started cabazitaxel as the next line of treatment after AR-V7 characterisation. RESULTS: A total of 127 samples were evaluable for the analysis of CTC count versus AR-V7 status. Although an association was observed between AR-V7 and CTC count in all patients with mCRPC (p = 0.017), no such association was found in the prognostic unfavourable subgroup of patients with ≥5 CTCs. After adjusting for clinical prognostic factors, AR-V7 expression in CTCs was not associated with overall survival (hazard ratio = 1.33, 95% confidence interval = 0.81-2.15, p = 0.25). CONCLUSION: We found that AR-V7 expression in CTCs had no additional prognostic value in patients with mCRPC, mostly treated with cabazitaxel. In patients with mCRPC with a predefined worse prognosis of a higher CTC count (≥5), a predictive biomarker is an important unmet medical need. Prospective trials should investigate whether AR-V7 detection in CTCs may guide treatment selection for these adverse prognosis patients.
Assuntos
Biomarcadores Tumorais/sangue , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/diagnóstico , Receptores Androgênicos/sangue , Idoso , Biomarcadores Tumorais/metabolismo , Contagem de Células Sanguíneas , Ensaios Clínicos como Assunto/estatística & dados numéricos , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/sangue , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Estudos Retrospectivos , Análise de Sobrevida , Taxoides/uso terapêuticoRESUMO
The androgen receptor splice variant (AR-V) 7 in circulating tumor cells (CTCs) is a predictor for resistance to anti-AR-targeted treatment, but not to taxane-based chemotherapy in metastatic castration-resistant prostate cancer (mCRPC). In this study, we investigated whether the presence of two constitutively active variants (AR-V3, AR-V7) and two other conditionally activated variants (AR-V1, AR-V9) vs full-length androgen receptor (AR-FL) measured in CTCs from patients with mCRPC were associated with outcome to therapy with the taxane cabazitaxel. Blood was collected at baseline and after two cycles of cabazitaxel from 118 mCRPC patients starting cabazitaxel in a prospective phase II trial. CellSearch-enriched CTCs were enumerated and in parallel characterized for the presence of the AR-Vs by reverse transcription quantitative polymerase chain reaction. Correlations with CTC and prostate-specific antigen response to cabazitaxel as well as associations with overall survival (OS) were investigated. All AR-Vs were frequently present and co-expressed at frequencies of 31-48% at baseline and at 19-40% after two cycles of cabazitaxel. No specific directions of change in the measured variants were detected between the start of treatment and after two cycles of cabazitaxel. No associations between the presence of AR-V3 and AR-V7 and outcome to cabazitaxel were observed. While a reduction in CTCs to < 5 CTCs during treatment (CTC5-response) was less often observed in patients with AR-V9-positive CTCs at baseline (P = 0.004), the CTC5-adjusted detection of AR-V1 after two cycles of cabazitaxel was an independent prognostic factor for OS [HR 2.4 (95% CI 1.1-5.1, P = 0.03)]. These novel findings are expected to contribute to more personalized treatment approaches in mCRPC patients.
Assuntos
Processamento Alternativo/genética , Células Neoplásicas Circulantes/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Taxoides/uso terapêutico , Idoso , Contagem de Células , Humanos , Masculino , Células Neoplásicas Circulantes/patologia , Antígeno Prostático Específico/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Análise de Sobrevida , Resultado do TratamentoRESUMO
PIK3CA is one of the most frequently mutated genes in invasive breast cancer (IBC). These mutations are generally associated with hyper-activation of the phosphatidylinositol 3-kinase signaling pathway, which involves increased phosphorylation of AKT (p-AKT). This pathway is negatively regulated by the tumor suppressor PTEN. Data are limited regarding the variant allele frequency (VAF) of PIK3CA, PTEN and p-AKT expression during various stages of breast carcinogenesis. Therefore, the aim of this study was to gain insight into PIK3CA VAF and associated PTEN and p-AKT expression during the progression from ductal carcinoma in situ (DCIS) to IBC. We isolated DNA from DCIS tissue, synchronous IBC and metastasis when present. These samples were pre-screened for PIK3CA hotspot mutations using the SNaPshot assay and, if positive, validated and quantified by digital PCR. PTEN and p-AKT expression was evaluated by immunohistochemistry using the Histo-score (H-score). Differences in PIK3CA VAF, PTEN and p-AKT H-scores between DCIS and IBC were analyzed. PIK3CA mutations were detected in 17 out of 73 DCIS samples, 16 out of 73 IBC samples and 3 out of 23 lymph node metastasis. We detected a significantly higher VAF of PIK3CA in the DCIS component compared to the adjacent IBC component (P = 0.007). The expression of PTEN was significantly higher in DCIS compared to the IBC component in cases with a wild-type (WT) PIK3CA status (P = 0.007), while it remained similar in both components when PIK3CA was mutated. There was no difference in p-AKT expression between DCIS and the IBC component. In conclusion, our data suggest that PIK3CA mutations could be essential specifically in early stages of breast carcinogenesis. In addition, these mutations do not co-occur with PTEN expression during DCIS progression to IBC in the majority of patients. These results may contribute to further unraveling the process of breast carcinogenesis, and this could aid in the development of patient-specific treatment.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Inflamatórias Mamárias/patologia , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Progressão da Doença , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Inflamatórias Mamárias/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , PrognósticoRESUMO
Recent reports have emphasized the clinical relevance of detecting AR-V7 in circulating tumor cells (CTCs). Our aim was to set up a validated multicenter pipeline to measure AR-V7 by quantitative RT-PCR (RT-qPCR) in RNA isolated from CellSearch-enriched CTCs to provide an AR-V7-positive or AR-V7-negative score in a clinically acceptable time range. CellSearch-enirched CTCs from patients with metastatic castration-resistant prostate cancer were characterized by RT-qPCR. After optimization, it was prospectively tested whether it was possible to report the AR-V7 status within 11 days (PRELUDE study). In the range of the RNA equivalent of 0.2 to 12 VCaP cells, the CV for AR-V7 was 9% (n = 37). The limit of detection was 0.3, and the limit of quantitation was 3 cells in the final RT-qPCR. No differences were observed between AR-V7 data generated by five technicians or in two different laboratories. For the 45 patients in PRELUDE, 13 patients were ineligible, 22 patients were AR-V7 negative, and 10 were AR-V7 positive. The median time to inform the physician of the test result was 7 days (range, 2 to 11 days). This assay can establish the AR-V7 status in CTCs from patients with metastatic castration-resistant prostate cancer. Furthermore, it was possible to provide an AR-V7 outcome within 11 days, indicating that it may be used to choose between an anti-androgen receptor or taxane-based cabazitaxel treatment.
Assuntos
Regulação Neoplásica da Expressão Gênica , Variação Genética/genética , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Receptores Androgênicos/genética , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Humanos , Limite de Detecção , Fase Pré-Analítica , RNA Mensageiro/metabolismo , Reprodutibilidade dos TestesRESUMO
The use of blood-circulating cell-free DNA (cfDNA) as 'liquid-biopsy' is explored worldwide, with hopes for its potential in providing prognostic or predictive information in cancer treatment. In exploring cfDNA, valuable repositories are biobanks containing material collected over time, however these retrospective cohorts have restrictive resources. In this study, we aimed to detect tumor-specific mutations in only minute amounts of serum-derived cfDNA by using a targeted next generation sequencing (NGS) approach. In a retrospective cohort of ten metastatic breast cancer patients, we profiled DNA from primary tumor tissue (frozen), tumor-adjacent normal tissue (formalin-fixed paraffin embedded), and three consecutive serum samples (frozen). Our presented workflow includes comparisons with matched normal DNA or in silico reference DNA to discriminate germline from somatic variants, validation of variants through the detection in at least two DNA samples of an individual, and the use of public databases on variants. By our workflow, we were able to detect a total of four variants traceable as circulating tumor DNA (ctDNA) in the sera of three of the ten patients.
Assuntos
Neoplasias da Mama/genética , Ácidos Nucleicos Livres/genética , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , DNA de Neoplasias/genética , Feminino , Humanos , Metástase Neoplásica , Análise de Sequência de DNA/métodosRESUMO
The aim was to identify mutations in serum cell-free DNA (cfDNA) associated with disease progression on tamoxifen treatment in metastatic breast cancer (MBC). Sera available at start of therapy, during therapy and at disease progression were selected from 10 estrogen receptor (ER)-positive breast cancer patients. DNA from primary tumor and normal tissue and cfDNA from minute amounts of sera were analyzed by targeted next generation sequencing (NGS) of 45 genes (1,242 exons). At disease progression, stop-gain single nucleotide variants (SNVs) for CREBBP (1 patient) and SMAD4 (1 patient) and non-synonymous SNVs for AKAP9 (1 patient), PIK3CA (2 patients) and TP53 (2 patients) were found. Mutations in CREBBP and SMAD4 have only been occasionally reported in breast cancer. All mutations, except for AKAP9, were also present in the primary tumor but not detected in all blood specimens preceding progression. More sensitive detection by deeper re-sequencing and digital PCR confirmed the occurrence of circulating tumor DNA (ctDNA) and these biomarkers in blood specimens.
Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/genética , Ácidos Nucleicos Livres/genética , DNA de Neoplasias/genética , Tamoxifeno/uso terapêutico , Proteínas de Ancoragem à Quinase A/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Mama/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteína de Ligação a CREB/genética , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/isolamento & purificação , Classe I de Fosfatidilinositol 3-Quinases/genética , Proteínas do Citoesqueleto/genética , DNA de Neoplasias/sangue , DNA de Neoplasias/isolamento & purificação , Progressão da Doença , Éxons/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Proteína Smad4/genética , Proteína Supressora de Tumor p53/genéticaRESUMO
Assessing circulating tumor DNA (ctDNA) is a promising method to evaluate somatic mutations from solid tumors in a minimally-invasive way. In a group of twelve metastatic colorectal cancer (mCRC) patients undergoing liver metastasectomy, from each patient DNA from cell-free DNA (cfDNA), the primary tumor, metastatic liver tissue, normal tumor-adjacent colon or liver tissue, and whole blood were obtained. Investigated was the feasibility of a targeted NGS approach to identify somatic mutations in ctDNA. This targeted NGS approach was also compared with NGS preceded by mutant allele enrichment using synchronous coefficient of drag alteration technology embodied in the OnTarget assay, and for selected mutations with digital PCR (dPCR). All tissue and cfDNA samples underwent IonPGM sequencing for a CRC-specific 21-gene panel, which was analyzed using a standard and a modified calling pipeline. In addition, cfDNA, whole blood and normal tissue DNA were analyzed with the OnTarget assay and with dPCR for specific mutations in cfDNA as detected in the corresponding primary and/or metastatic tumor tissue. NGS with modified calling was superior to standard calling and detected ctDNA in the cfDNA of 10 patients harboring mutations in APC, ATM, CREBBP, FBXW7, KRAS, KMT2D, PIK3CA and TP53. Using this approach, variant allele frequencies in plasma ranged predominantly from 1 to 10%, resulting in limited concordance between ctDNA and the primary tumor (39%) and the metastases (55%). Concordance between ctDNA and tissue markedly improved when ctDNA was evaluated for KRAS, PIK3CA and TP53 mutations by the OnTarget assay (80%) and digital PCR (93%). Additionally, using these techniques mutations were observed in tumor-adjacent tissue with normal morphology in the majority of patients, which were not observed in whole blood. In conclusion, in these mCRC patients with oligometastatic disease NGS on cfDNA was feasible, but had limited sensitivity to detect all somatic mutations present in tissue. Digital PCR and mutant allele enrichment before NGS appeared to be more sensitive to detect somatic mutations.
Assuntos
DNA Tumoral Circulante/sangue , Neoplasias do Colo/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Mutação/genética , Sistema Livre de Células , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Células Neoplásicas Circulantes/patologia , Reação em Cadeia da PolimeraseRESUMO
Epithelial ovarian cancer is a highly heterogeneous disease and remains the most lethal gynaecological malignancy in the Western world. Therapeutic approaches need to account for inter-patient and intra-tumoural heterogeneity and detailed characterization of in vitro models representing the different histological and molecular ovarian cancer subtypes is critical to enable reliable preclinical testing. There are approximately 100 publicly available ovarian cancer cell lines but their cellular and molecular characteristics are largely undescribed. We have characterized 39 ovarian cancer cell lines under uniform conditions for growth characteristics, mRNA/microRNA expression, exon sequencing, drug response for clinically-relevant therapeutics and collated all available information on the original clinical features and site of origin. We tested for statistical associations between the cellular and molecular features of the lines and clinical features. Of the 39 ovarian cancer cell lines, 14 were assigned as high-grade serous, four serous-type, one low-grade serous and 20 non-serous type. Three morphological subtypes: Epithelial (nâ=â21), Round (nâ=â7) and Spindle (nâ=â12) were identified that showed distinct biological and molecular characteristics, including overexpression of cell movement and migration-associated genes in the Spindle subtype. Comparison with the original clinical data showed association of the spindle-like tumours with metastasis, advanced stage, suboptimal debulking and poor prognosis. In addition, the expression profiles of Spindle, Round and Epithelial morphologies clustered with the previously described C1-stromal, C5-mesenchymal and C4 ovarian subtype expression profiles respectively. Comprehensive profiling of 39 ovarian cancer cell lines under controlled, uniform conditions demonstrates clinically relevant cellular and genomic characteristics. This data provides a rational basis for selecting models to develop specific treatment approaches for histological and molecular subtypes of ovarian cancer.