Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Infect Dis ; 78(4): 870-879, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37967326

RESUMO

BACKGROUND: The rVSVΔG-ZEBOV-GP vaccine (ERVEBO®) is a single-dose, live-attenuated, recombinant vesicular stomatitis virus vaccine indicated for the prevention of Ebola virus disease (EVD) caused by Zaire ebolavirus in individuals 12 months of age and older. METHODS: The Partnership for Research on Ebola VACcination (PREVAC) is a multicenter, phase 2, randomized, double-blind, placebo-controlled trial of 3 vaccine strategies in healthy children (ages 1-17) and adults, with projected 5 years of follow-up (NCT02876328). Using validated assays (GP-ELISA and PRNT), we measured antibody responses after 1-dose rVSVΔG-ZEBOV-GP, 2-dose rVSVΔG-ZEBOV-GP (given on Day 0 and Day 56), or placebo. Furthermore, we quantified vaccine virus shedding in a subset of children's saliva using RT-PCR. RESULTS: In total, 819 children and 783 adults were randomized to receive rVSVΔG-ZEBOV-GP (1 or 2 doses) or placebo. A single dose of rVSVΔG-ZEBOV-GP increased antibody responses by Day 28 that were sustained through Month 12. A second dose of rVSVΔG-ZEBOV-GP given on Day 56 transiently boosted antibody concentrations. In vaccinated children, GP-ELISA titers were superior to placebo and non-inferior to vaccinated adults. Vaccine virus shedding was observed in 31.7% of children, peaking by Day 7, with no shedding observed after Day 28 post-dose 1 or any time post-dose 2. CONCLUSIONS: A single dose of rVSVΔG-ZEBOV-GP induced robust antibody responses in children that was non-inferior to the responses induced in vaccinated adults. Vaccine virus shedding in children was time-limited and only observed after the first dose. Overall, these data support the use of rVSVΔG-ZEBOV-GP for the prevention of EVD in at-risk children. Clinical Trials Registration. The study is registered at ClinicalTrials.gov (NCT02876328), the Pan African Clinical Trials Registry (PACTR201712002760250), and the European Clinical Trials Register (EudraCT number: 2017-001798-18).


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Adulto , Criança , Humanos , Anticorpos Antivirais , Proteínas do Envelope Viral , Vacinas Sintéticas , Vacinação/métodos , Vacinas Atenuadas , Imunogenicidade da Vacina
2.
PLoS One ; 6(8): e23867, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858231

RESUMO

Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s) in parasites and thus characterize proteases such as metacaspases (MCA), which have been reported to induce cell death in plants and Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on the innate pathways of protozoan cell death.


Assuntos
Clorometilcetonas de Aminoácidos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Cisteína Endopeptidases/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Antimaláricos/farmacologia , Sequência de Bases , Cálcio/metabolismo , Inibidores de Caspase , Caspases/genética , Cloroquina/farmacologia , Cisteína Endopeptidases/genética , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Endopeptidases/genética , Endopeptidases/metabolismo , Citometria de Fluxo , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Oxidantes/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
3.
J Infect Dis ; 192(10): 1823-9, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16235184

RESUMO

BACKGROUND: Trimethoprim-sulfamethoxazole (TS) prophylaxis is recommended for persons living with human immunodeficiency virus infection and acquired immunodeficiency syndrome in Africa. TS and the antimalarial combination sulfadoxine-pyrimethamine (SP) share mechanisms of action and resistance patterns, and concerns about the impact of TS resistance on SP efficacy have contributed to reluctance to implement TS prophylaxis in Africa. METHODS: To determine whether TS prophylaxis impairs SP efficacy for treatment of uncomplicated falciparum malaria, we conducted a randomized, controlled, open-label study of TS prophylaxis. Two hundred and forty children 5-15 years old were randomized in a 2 : 1 fashion to receive either thrice-weekly TS for 12 weeks or no prophylaxis and were treated with SP for subsequent episodes of malaria. The incidence of malaria, SP efficacy, and the prevalence of parasite mutations that confer antifolate drug resistance were measured. RESULTS: TS prophylaxis had a 99.5% protective efficacy against episodes of clinical malaria, with 97% efficacy against infection. Four SP treatment failures occurred in the control group, and none occurred in the TS group. No evidence was seen for selection by TS of antifolate resistance-conferring mutations in parasite dihydrofolate reductase or dihydropteroate synthase during subclinical infections. CONCLUSIONS: In this setting of low antifolate resistance, TS was highly effective in preventing falciparum malaria infection and disease and did not appear to select for SP-resistant parasites.


Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Adolescente , Animais , Quimioprevenção , Criança , Pré-Escolar , Resistência a Medicamentos/genética , Feminino , Antagonistas do Ácido Fólico/farmacologia , Humanos , Masculino , Mutação , Plasmodium falciparum/genética , Prevalência , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA