Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Thromb Res ; 230: 1-10, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598635

RESUMO

BACKGROUND: Cranial and extra-cranial vascular events are among the major determinants of morbidity and mortality in Giant Cell Arteritis (GCA). Vascular events seem mostly of inflammatory nature, although the precise pathogenetic mechanisms are still unclear. We investigated the role of oxidation-induced structural and functional fibrinogen modifications in GCA. The effects of the anti-IL6R tocilizumab in counteracting these mechanisms were also assessed. MATERIALS AND METHODS: A cross-sectional study was conducted on 65 GCA patients and 65 matched controls. Leucocyte reactive oxygen species (ROS) production, redox state, and fibrinogen structural and functional features were compared between patients and controls. In 19 patients receiving tocilizumab, pre vs post treatment variations were assessed. RESULTS: GCA patients displayed enhanced blood lymphocyte, monocyte and neutrophil ROS production compared to controls, with an increased plasma lipid peroxidation and a reduced total antioxidant capacity. This oxidative impairment resulted in a sustained fibrinogen oxidation (i.e. dityrosine content 320 (204-410) vs 136 (120-176) Relative Fluorescence Units (RFU), p < 0.0001), with marked alterations in fibrinogen secondary and tertiary structure [intrinsic fluorescence: 134 (101-227) vs 400 (366-433) RFU, p < 0.001]. Structural alterations paralleled a remarkable fibrinogen functional impairment, with a reduced ability to polymerize into fibrin and a lower fibrin susceptibility to plasmin-induced lysis. In patients receiving tocilizumab, a significant improvement in redox status was observed, accompanied by a significant improvement in fibrinogen structural and functional features (p < 0.001). CONCLUSIONS: An impaired redox status accounts for structural and functional fibrinogen modifications in GCA, suggesting a potential role of tocilizumab for cardiovascular prevention in GCA.


Assuntos
Arterite de Células Gigantes , Hemostáticos , Humanos , Arterite de Células Gigantes/tratamento farmacológico , Interleucina-6 , Espécies Reativas de Oxigênio , Fibrinogênio/química , Estudos Transversais , Fibrina
2.
Biomolecules ; 13(6)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371466

RESUMO

Blood vessels are the most important way for cancer cells to survive and diffuse in the body, metastasizing distant organs. During the process of tumor expansion, the neoplastic mass progressively induces modifications in the microenvironment due to its uncontrolled growth, generating a hypoxic and low pH milieu with high fluid pressure and low nutrients concentration. In such a particular condition, reactive oxygen species play a fundamental role, enhancing tumor proliferation and migration, inducing a glycolytic phenotype and promoting angiogenesis. Indeed, to reach new sources of oxygen and metabolites, highly aggressive cancer cells might produce a new abnormal network of vessels independently from endothelial cells, a process called vasculogenic mimicry. Even though many molecular markers and mechanisms, especially in gastric cancer, are still unclear, the formation of such intricate, leaky and abnormal vessel networks is closely associated with patients' poor prognosis, and therefore finding new pharmaceutical solutions to be applied along with canonical chemotherapies in order to control and normalize the formation of such networks is urgent.


Assuntos
Neoplasias Gástricas , Humanos , Espécies Reativas de Oxigênio , Células Endoteliais/metabolismo , Linhagem Celular Tumoral , Neovascularização Patológica/metabolismo , Microambiente Tumoral
3.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240162

RESUMO

Behçet's syndrome (BS) is a rare systemic vasculitis characterized by different clinical manifestations. As no specific laboratory tests exist, the diagnosis relies on clinical criteria, and the differential diagnosis with other inflammatory diseases can be challenging. Indeed, in a relatively small proportion of patients, BS symptoms include only mucocutaneous, articular, gastrointestinal, and non-typical ocular manifestations, which are frequently found also in psoriatic arthritis (PsA). We investigate the ability of serum interleukin (IL)-36α-a pro-inflammatory cytokine involved in cutaneous and articular inflammatory diseases-to differentiate BS from PsA. A cross-sectional study was performed on 90 patients with BS, 80 with PsA and 80 healthy controls. Significantly lower IL-36α concentrations were found in patients with BS as compared to PsA, although in both groups IL-36α was significantly increased compared to healthy controls. An empirical cut-off of 420.6 pg/mL displayed a specificity of 0.93, with a sensitivity of 0.70 (AUC 0.82) in discriminating PsA from BS. This cut-off displayed a good diagnostic performance also in BS patients lacking highly specific BS manifestations. Our results indicate that IL-36α might be involved in the pathogenesis of both BS and PsA, and might be a candidate biomarker to support the differential diagnosis of BS.


Assuntos
Artrite Psoriásica , Síndrome de Behçet , Humanos , Síndrome de Behçet/diagnóstico , Artrite Psoriásica/diagnóstico , Estudos Transversais , Biomarcadores , Citocinas
4.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770719

RESUMO

A panel of four novel gold(I) complexes, inspired by the clinically established gold drug auranofin (1-Thio-ß-D-glucopyranosatotriethylphosphine gold-2,3,4,6-tetraacetate), was prepared and characterized. All these compounds feature the replacement of the triethylphosphine ligand of the parent compound auranofin with a trimethylphosphite ligand. The linear coordination around the gold(I) center is completed by Cl-, Br-, I- or by the thioglucose tetraacetate ligand (SAtg). The in-solution behavior of these gold compounds as well as their interactions with some representative model proteins were comparatively analyzed through 31PNMR and ESI-MS measurements. Notably, all panel compounds turned out to be stable in aqueous media, but significant differences with respect to auranofin were disclosed in their interactions with a few leading proteins. In addition, the cytotoxic effects produced by the panel compounds toward A2780, A2780R and SKOV-3 ovarian cancer cells were quantitated and found to be in the low micromolar range, since the IC50 of all compounds was found to be between 1 µM and 10 µM. Notably, these novel gold complexes showed large and similar inhibition capabilities towards the key enzyme thioredoxin reductase, again comparable to those of auranofin. The implications of these results for the discovery of new and effective gold-based anticancer agents are discussed.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Fosfitos , Humanos , Feminino , Auranofina/farmacologia , Auranofina/química , Ouro/química , Linhagem Celular Tumoral , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química
5.
Environ Pollut ; 317: 120766, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460192

RESUMO

The neuroendocrine control of reproduction is strictly coordinated at the central level by the pulsatile release of gonadotropin-releasing hormone (GnRH) by the hypothalamic GnRH neurons. Alterations of the GnRH-network, especially during development, lead to long-term reproductive and systemic consequences, also causing infertility. Recent evidence shows that benzo[a]pyrene (BaP), a diffuse pollutant that can play a role as an endocrine disruptor, affects gonadal function and gamete maturation, whereas data demonstrating its impact at hypothalamic level are very scarce. This study investigated the effects of BaP (10 µM) in a primary cell culture isolated from the human fetal hypothalamus (hfHypo) and exhibiting a clear GnRH neuron phenotype. BaP significantly decreased gene and protein expression of both GnRH and kisspeptin receptor (KISS1R), the master regulator of GnRH neuron function. Moreover, BaP exposure increased phospho-ERK1/2 signaling, a well-known mechanism associated with KISS1R activation. Interestingly, BaP altered the electrophysiological membrane properties leading to a significant depolarizing effect and it also significantly increased GnRH release, with both effects being not affected by kisspeptin addition. In conclusion, our findings demonstrate that BaP may alter GnRH neuron phenotype and function, mainly interfering with KISS1R signaling and GnRH secretion and therefore with crucial mechanisms implicated in the central neuroendocrine control of reproduction.


Assuntos
Hormônio Liberador de Gonadotropina , Kisspeptinas , Humanos , Receptores de Kisspeptina-1/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Reprodução/fisiologia , Neurônios
6.
Antioxidants (Basel) ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38247453

RESUMO

Cholangiocarcinoma (CCA) is a primary liver tumor that accounts for 2% of all cancer-related deaths worldwide yearly. It can arise from cholangiocytes of biliary tracts, peribiliary glands, and possibly from progenitor cells or even hepatocytes. CCA is characterized by high chemoresistance, aggressiveness, and poor prognosis. Potentially curative surgical therapy is restricted to a small number of patients with early-stage disease (up to 35%). Accumulating evidence indicates that CCA is an oxidative stress-driven carcinoma resulting from chronic inflammation. Oxidative stress, due to enhanced reactive oxygen species (ROS) production and/or decreased antioxidants, has been recently suggested as a key factor in cholangiocyte oncogenesis through gene expression alterations and molecular damage. However, due to different experimental models and conditions, contradictory results regarding oxidative stress in cholangiocarcinoma have been reported. The role of ROS and antioxidants in cancer is controversial due to their context-dependent ability to stimulate tumorigenesis and support cancer cell proliferation or promote cell death. On these bases, the present narrative review is focused on illustrating the role of oxidative stress in cholangiocarcinoma and the main ROS-driven intracellular pathways. Heterogeneous data about antioxidant effects on cancer development are also discussed.

7.
Mech Ageing Dev ; 206: 111689, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35728630

RESUMO

Ageing is a complex biological phenomenon representing the major risk factor for developing age-related diseases, such as cardiovascular pathologies, neurodegenerative diseases, and cancer. Geroscience, the new vision of gerontology, identifies cellular senescence as an interconnected biological process that characterises ageing and age-related diseases. Therefore, many strategies have been employed in the last years to reduce the harmful effects of senescence, and among these, the most intriguing ones use nutraceutical compounds. Here we show that a pre-treatment with Quercetin, a bioactive flavonoid present in many fruits and vegetables, increasing cellular antioxidant defence, can alleviate Doxorubicin (Doxo)-induced cellular senescence in human normal WI-38 fibroblasts. Furthermore, our work demonstrates that Quercetin pre-treatment, reducing the number of senescent cells and the production of the senescence-associated secretory phenotype (SASP) factors, can decrease the pro-tumour effects of conditioned medium from Doxo-induced senescent fibroblasts on osteosarcoma cells. Overall, our findings are consistent with the hypothesis that targeting senescent cells can be an emerging strategy for cancer treatment, especially in elderly patients, in which senescent cells are already abundant in several tissues and organs.


Assuntos
Fenômenos Biológicos , Neoplasias , Idoso , Senescência Celular , Doxorrubicina/farmacologia , Fibroblastos/patologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Quercetina/farmacologia
8.
Cells ; 11(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35626683

RESUMO

Cadmium (Cd) is a well-known occupational and environmental pollutant worldwide, and its toxicity is widely recognised. Cd is reported to increase the permeability of the blood-brain barrier (BBB) and to penetrate and accumulate in the brain. Although many lines of evidence show that Cd toxicity is induced by different mechanisms, one of the best known is the Cd-dependent production of reactive oxygen species (ROS). Zinc is a trace element known as coenzyme and cofactor for many antioxidant proteins, such as metallothioneins and superoxide dismutase enzymes. To date, very little is known about the role of Zn in preventing Cd-induced blood-brain barrier (BBB) alterations. The goal of this study was to test the Zn antioxidant capacity against Cd-dependent alterations in a rat brain endothelial cell line (RBE4), as an in vitro model for BBB. In order to mimic acute Cd poisoning, RBE4 cells were treated with CdCl2 30 µM for 24 h. The protective role of ZnCl2 (50 µM) was revealed by evaluating the cell viability, reactive oxygen species (ROS) quantification, cytochrome C distribution, and the superoxide dismutase (SOD) protein activity. Additionally, the effectiveness of Zn in counteracting the Cd-induced damage was investigated by evaluating the expression levels of proteins already known to be involved in the Cd signalling pathway, such as GRP78 (an endoplasmic reticulum (ER) stress protein), caspase3 pro- and cleaved forms, and BAX. Finally, we evaluated if Zn was able to attenuate the alterations of zonula occludens-1 (ZO-1), one of the tight-junction (TJ) proteins involved in the formation of the BBB. Our data clearly demonstrate that Zn, by protecting from the SOD activity impairment induced by Cd, is able to prevent the triggering of the Cd-dependent signalling pathway that leads to ZO-1 dislocation and downregulation, and BBB damage.


Assuntos
Cádmio , Zinco , Animais , Antioxidantes/metabolismo , Barreira Hematoencefálica/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Zinco/metabolismo , Zinco/farmacologia
10.
Eur J Histochem ; 65(s1)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34755507

RESUMO

Oxaliplatin is a third-generation chemotherapy drug mainly used for colorectal cancer treatment. However, it is also known to trigger neuropathy whose underlying neurobiological mechanisms are still under investigation and currently available treatments show limited efficacy. It is now established that neurons are not the only cell type involved in chronic pain and that glial cells, mainly astrocytes and microglia, are involved in the initiation and maintenance of neuropathy. Among all the pathogenetic factors involved in neuropathic pain, an oxaliplatin-dependent oxidative stress plays a predominant role. In our study, the antioxidant properties of magnesium (Mg), manganese (Mn) and zinc (Zn) salts were evaluated in order to counteract microglial activation induced by oxaliplatin. The antioxidant efficacy of these metals was evaluated by the means of molecular and morphological assays on the BV-2 microglial cell line. Our data clearly show that Mg, Mn and Zn are able to prevent oxaliplatin-dependent microglial alterations by reducing both oxidative and endoplasmic reticulum stress.


Assuntos
Antioxidantes/farmacologia , Cloretos/farmacologia , Cloreto de Magnésio/farmacologia , Compostos de Manganês/farmacologia , Oxaliplatina/toxicidade , Compostos de Zinco/farmacologia , Animais , Antígeno B7-2/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
Eur J Histochem ; 65(s1)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459573

RESUMO

Benzo[a]pyrene (BaP) is a widespread pollutant that can act as an endocrine disrupting compound (EDC) and interferes with reproductive function. The central regulatory network of the reproductive system is mediated by gonadotropin-releasing hormone (GnRH) neurons, which originate in the olfactory placode and, during ontogenesis, migrate into the hypothalamus. Given the importance of the migratory process for GnRH neuron maturation, we investigated the effect of BaP (10 µM for 24 h) on GnRH neuroblasts isolated from the human fetal olfactory epithelium (FNCB4). BaP exposure significantly reduced the mRNA level of genes implicated in FNCB4 cell migration and affected their migratory ability. Our findings demonstrate that BaP may interfere with the central neuronal network controlling human reproduction affecting GnRH neuron maturation.


Assuntos
Benzo(a)pireno/efeitos adversos , Movimento Celular , Feto/patologia , Hormônio Liberador de Gonadotropina/metabolismo , Células-Tronco Neurais/patologia , Neurônios/patologia , Mucosa Olfatória/patologia , Feto/efeitos dos fármacos , Feto/metabolismo , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/metabolismo
12.
Biomedicines ; 9(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440075

RESUMO

Au2phen ((2,9-dimethyl-1,10-phenanthroline)2Au2(µ-O)2)(PF6)2 and Auoxo6 ((6,6'-dimethyl-2,2'-bipyridine)2Au2(µ-O)2)(PF6)2 are two structurally related gold(III) complexes that were previously reported to display relevant and promising anticancer properties in vitro toward a large number of human cancer cell lines. To expand the knowledge on the molecular mechanisms through which these gold(III) complexes trigger apoptosis in cancer cells, further studies have been performed using A2780 ovarian cancer cells as reference models. For comparative purposes, parallel studies were carried out on the gold(III) complex AuL12 (dibromo(ethylsarcosinedithiocarbamate)gold(III)), whose proapoptotic profile had been earlier characterized in several cancer cell lines. Our results pointed out that all these gold(III) compounds manifest a significant degree of similarity in their cellular and proapoptotic effects; the main observed perturbations consist of potent thioredoxin reductase inhibition, disruption of the cell redox balance, impairment of the mitochondrial membrane potential, and induction of associated metabolic changes. In addition, evidence was gained of the remarkable contribution of ASK1 (apoptosis-signal-regulating kinase-1) and AKT pathways to gold(III)-induced apoptotic signaling. Overall, the observed effects may be traced back to gold(III) reduction and subsequent formation and release of gold(I) species that are able to bind and inhibit several enzymes responsible for the intracellular redox homeostasis, in particular the selenoenzyme thioredoxin reductase.

13.
Antioxidants (Basel) ; 10(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073102

RESUMO

Giant cell arteritis (GCA), medium and large vessel granulomatous vasculitis affecting the elderly, is characterized by a multitude of vascular complications, including venous thrombosis, myocardial infraction and stroke. The formation of granulomatous infiltrates and the enhanced accumulation of proinflammatory cytokines are typical features of this condition. The GCA pathogenesis remains largely unknown, but recent studies have suggested the involvement of oxidative stress, mainly sustained by an enhanced reactive oxygen species (ROS) production by immature neutrophils. On this basis, in the present study, we intended to evaluate, in GCA patients, the presence of systemic oxidative stress and possible alterations in the expression level of nuclear sirtuins, enzymes involved in the inhibition of inflammation and oxidative stress. Thirty GCA patients were included in the study and compared to 30 healthy controls in terms of leukocyte ROS production, oxidative stress and SIRT1 expression. Our results clearly indicated a significant increase (p < 0.05) both in the ROS levels in the leukocyte fractions and plasma oxidative stress markers (lipid peroxidation and total antioxidant capacity) in the GCA patients compared to the healthy controls. In PBMCs from the GCA patients, a significant decrease in SIRT1 expression (p < 0.05) but not in SIRT6 and SIRT7 expression was found. Taken together, our preliminary findings indicate that, in GCA patients, plasma oxidative stress is paralleled by a reduced SIRT1 expression in PBMC. Further studies are needed to highlight if and how these alterations contribute to GCA pathogenesis.

14.
Exp Eye Res ; 205: 108527, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667466

RESUMO

The purpose of this study was to evaluate the expression of the SARS-CoV-2 receptors ACE2 and TMPRSS2 in an immortalized human conjunctival epithelial cell line and in healthy human conjunctiva excised during ocular surgery, using Western blot, confocal microscopy and immunohistochemistry. The Western blot showed that ACE2 and TMPRSS2 proteins were expressed in human immortalized conjunctival cells, and this was confirmed by confocal microscopy images, that demonstrated a marked cellular expression of the viral receptors and their co-localization on the cell membranes. Healthy conjunctival samples from 11 adult patients were excised during retinal detachment surgery. We found the expression of ACE2 and TMPRSS2 in all the conjunctival surgical specimens analyzed and their co-localization in the superficial conjunctival epithelium. The ACE2 Western blot levels and immunofluorescence staining for ACE2 were variable among specimens. These results suggest the susceptibility of the conjunctival epithelium to SARS-CoV-2 infection, even though with a possible interindividual variability.


Assuntos
COVID-19/genética , Túnica Conjuntiva/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Peptidil Dipeptidase A/genética , Serina Endopeptidases/genética , COVID-19/metabolismo , COVID-19/patologia , Células Epiteliais/patologia , Humanos , Imuno-Histoquímica , Peptidil Dipeptidase A/biossíntese , RNA/genética , RNA/metabolismo , SARS-CoV-2 , Serina Endopeptidases/biossíntese
15.
Front Cell Dev Biol ; 8: 604377, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330504

RESUMO

Cadmium (Cd) is a well-known heavy metal and environmental toxicant and pollutant worldwide, being largely present in every kind of item such as plastic (toys), battery, paints, ceramics, contaminated water, air, soil, food, fertilizers, and cigarette smoke. Nowadays, it represents an important research area for the scientific community mainly for its effects on public health. Due to a half-life ranging between 15 and 30 years, Cd owns the ability to accumulate in organs and tissues, exerting deleterious effects. Thus, even at low doses, a Cd prolonged exposure may cause a multiorgan toxicity. Mitochondria are key intracellular targets for Cd-induced cytotoxicity, but the underlying mechanisms are not fully elucidated. The present review is aimed to clarify the effects of Cd on mitochondria and, particularly, on the mitochondrial electron transport chain.

16.
Antioxidants (Basel) ; 9(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516892

RESUMO

Cadmium (Cd), a category I human carcinogen, is a well-known widespread environmental pollutant. Chronic Cd exposure affects different organs and tissues, such as the central nervous system (CNS), and its deleterious effects can be linked to indirect reactive oxygen species (ROS) generation. Since Cd is predominantly present in +2 oxidation state, it can interplay with a plethora of channels and transporters in the cell membrane surface in order to enter the cells. Mitochondrial dysfunction, ROS production, glutathione depletion and lipid peroxidation are reviewed in order to better characterize the Cd-elicited molecular pathways. Furthermore, Cd effects on different CNS cell types have been highlighted to better elucidate its role in neurodegenerative disorders. Indeed, Cd can increase blood-brain barrier (BBB) permeability and promotes Cd entry that, in turn, stimulates pericytes in maintaining the BBB open. Once inside the CNS, Cd acts on glial cells (astrocytes, microglia, oligodendrocytes) triggering a pro-inflammatory cascade that accounts for the Cd deleterious effects and neurons inducing the destruction of synaptic branches.

17.
Int J Mol Sci ; 20(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795317

RESUMO

Cadmium (Cd) is a highly toxic environmental pollutant released from the smelting and refining of metals and cigarette smoking. Oral exposure to cadmium may result in adverse effects on a number of tissues, including the central nervous system (CNS). In fact, its toxicity has been related to neurological disorders, as well as neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Under normal conditions, Cd barely reaches the brain in adults because of the presence of the blood-brain barrier (BBB); however, it has been demonstrated that Cd-dependent BBB alteration contributes to pathogenesis of neurodegeneration. However, the mechanism underlying Cd-dependent BBB alteration remain obscure. Here, we investigated the signaling pathway of Cd-induced tight junction (TJ), F-actin, and vimentin protein disassembly in a rat brain endothelial cell line (RBE4). RBE4 cells treated with 10 µM cadmium chloride (CdCl2) showed a dose- and time-dependent significant increase in reactive oxygen species (ROS) production. This phenomenon was coincident with the alteration of the TJ zonula occludens-1 (ZO-1), F-actin, and vimentin proteins. The Cd-dependent ROS increase elicited the upregulation of GRP78 expression levels, a chaperone involved in endoplasmic reticulum (ER) stress that induces caspase-3 activation. Further signal profiling by the pannexin-1 (PANX1) specific inhibitor 10Panx revealed a PANX1-independent increase in ATP spillage in Cd-treated endothelial cells. Our results point out that a ROS-dependent ER stress-mediated signaling pathway involving caspase-3 activation and ATP release is behind the BBB morphological alterations induced by Cd.


Assuntos
Barreira Hematoencefálica/metabolismo , Cádmio/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Actinas/metabolismo , Animais , Barreira Hematoencefálica/citologia , Linhagem Celular , Estresse do Retículo Endoplasmático , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Vimentina/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-31718076

RESUMO

The protective effect of cannabidiol (CBD), the non-psychoactive component of Cannabis sativa, against neuronal toxicity induced by cadmium chloride (CdCl2 10 µM) was investigated in a retinoic acid (RA)-differentiated SH-SY5Y neuroblastoma cell line. CBD (1 µM) was applied 24 h before and removed during cadmium (Cd) treatment. In differentiated neuronal cells, CBD significantly reduced the Cd-dependent decrease of cell viability, and the rapid reactive oxygen species (ROS) increase. CBD significantly prevented the endoplasmic reticulum (ER) stress (GRP78 increase) and the subcellular distribution of the cytochrome C, as well as the overexpression of the pro-apoptotic protein BAX. Immunocytochemical analysis as well as quantitative protein evaluation by western blotting revealed that CBD partially counteracted the depletion of the growth associated protein 43 (GAP43) and of the neuronal specific class III ß-tubulin (ß3 tubulin) induced by Cd treatment. These data showed that Cd-induced neuronal injury was ameliorated by CBD treatment and it was concluded that CBD may represent a potential option to protect neuronal cells from the detrimental effects of Cd toxicity.


Assuntos
Cádmio/toxicidade , Canabidiol/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo
19.
J Cataract Refract Surg ; 45(7): 910-914, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31262481

RESUMO

PURPOSE: To analyze anterior chamber inflammation after pretreatment with a femtosecond laser platform during cataract surgery and compare the results with those of the manual procedure. SETTING: Eye Clinic, Department of Surgery and Translational Medicine, University of Florence, Italy. DESIGN: Prospective case series. METHODS: Aqueous humor was collected after femtosecond laser pretreatment (femtosecond group) and at the beginning of routine cataract surgery before the primary incision was created (control group). The levels of 14 cytokines and chemokines were measured using a multiplex array system. Surgical parameters (suction time, laser time, effective phacoemulsification time [EPT]) were recorded. Anterior chamber flare was measured by laser photometry preoperatively and 1 day and 7 days postoperatively. RESULTS: Each group comprised 20 eyes. The EPT was significantly lower in the femtosecond group than in the control group. In the femtosecond group, the concentrations of IL (interleukin)-6, IL-8, IL-10, IL-12, vascular endothelial growth factor, and interferon-γ were significantly higher than in the control group. Flare in the anterior chamber measured with flare-cell meter was not significantly different between groups at any timepoint. No correlation was found between cytokine concentrations and age in either group and between cytokine levels and suction or laser time and postoperative flare in the femtosecond group. Also, no correlation was found between postoperative aqueous flare and EPT in either group. CONCLUSIONS: Despite the rise of proinflammatory cytokines in the aqueous humor after femtosecond laser pretreatment, the anterior chamber flare after cataract surgery was similar to that in controls. This might be a result of the lower EPT required after pretreatment.


Assuntos
Câmara Anterior/metabolismo , Citocinas/metabolismo , Terapia a Laser/métodos , Facoemulsificação/métodos , Acuidade Visual , Idoso , Idoso de 80 Anos ou mais , Humor Aquoso/metabolismo , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Feminino , Humanos , Masculino , Período Pós-Operatório , Prognóstico , Estudos Prospectivos
20.
ACS Med Chem Lett ; 10(4): 656-660, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30996813

RESUMO

In recent years, a few successful attempts were made to repurpose the clinically approved antiarthritic gold drug, Auranofin (AF), as an anticancer agent. The present study shows that the iodido(triethylphosphine)gold(I) complex, (Et 3 PAuI hereafter)-an AF analogue where the thiosugar ligand is simply replaced by one iodide ligand-manifests a solution chemistry resembling that of AF and exerts similar cytotoxic and proapoptotic effects on A2780 human ovarian cancer cells in vitro. However, when evaluated in a preclinical orthotopic model of ovarian cancer, Et 3 PAuI produces a far superior anticancer action than AF inducing a nearly complete tumor remission. The highly promising in vivo performances here documented for Et 3 PAuI warrant its further evaluation as a drug candidate for ovarian cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA