Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923359

RESUMO

The hERG1 potassium channel is aberrantly over expressed in tumors and regulates the cancer cell response to integrin-dependent adhesion. We unravel a novel signaling pathway by which integrin engagement by the ECM protein fibronectin promotes hERG1 translocation to the plasma membrane and its association with ß1 integrins, by activating girdin-dependent Gαi3 proteins and protein kinase B (Akt). By sequestering hERG1, ß1 integrins make it avoid Rab5-mediated endocytosis, where unbound channels are degraded. The cycle of hERG1 expression determines the resting potential (Vrest) oscillations and drives the cortical f-actin dynamics and thus cell motility. To interpret the slow biphasic kinetics of hERG1/ß1 integrin interplay, we developed a mathematical model based on a generic balanced inactivation-like module. Integrin-mediated cell adhesion triggers two contrary responses: a rapid stimulation of hERG1/ß1 complex formation, followed by a slow inhibition which restores the initial condition. The protracted hERG1/ß1 integrin cycle determines the slow time course and cyclic behavior of cell migration in cancer cells.


Assuntos
Integrinas , Neoplasias , Humanos , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Integrina beta1/metabolismo , Integrinas/metabolismo , Neoplasias/patologia , Transdução de Sinais
2.
Curr Top Membr ; 92: 15-46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38007266

RESUMO

The cytoplasmic Ca2+ concentration and the activity of K+ channels on the plasma membrane regulate cellular processes ranging from mitosis to oriented migration. The interplay between Ca2+ and K+ signals is intricate, and different cell types rely on peculiar cellular mechanisms. Derangement of these mechanisms accompanies the neoplastic progression. The calcium signals modulated by voltage-gated (KV) and calcium-dependent (KCa) K+ channel activity regulate progression of the cell division cycle, the release of growth factors, apoptosis, cell motility and migration. Moreover, KV channels regulate the cell response to the local microenvironment by assembling with cell adhesion and growth factor receptors. This chapter summarizes the pathophysiological roles of Ca2+ and K+ fluxes in normal and cancer cells, by concentrating on several biological systems in which these functions have been studied in depth, such as early embryos, mammalian cell lines, T lymphocytes, gliomas and colorectal cancer cells. A full understanding of the underlying mechanisms will offer a comprehensive view of the ion channel implication in cancer biology and suggest potential pharmacological targets for novel therapeutic approaches in oncology.


Assuntos
Cálcio , Neoplasias , Animais , Cálcio/metabolismo , Canais Iônicos/metabolismo , Linfócitos T/metabolismo , Linhagem Celular , Movimento Celular , Mamíferos/metabolismo , Neoplasias/metabolismo
3.
Membranes (Basel) ; 12(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36422154

RESUMO

Ion channels are implicated in various diseases, including cancer, in which they modulate different aspects of cancer progression. In particular, potassium channels are often aberrantly expressed in cancers, a major example being provided by hERG1. The latter is generally complexed with ß1 integrin in tumour cells, and such a molecular complex represents a new druggable hub. The present study focuses on the characterization of the functional consequences of the interaction between hERG1 and ß1 integrins on different substrates over time. To this purpose, we studied the interplay alteration on the plasma membrane through patch clamp techniques in a cellular model consisting of human embryonic kidney (HEK) cells stably transfected with hERG1 and in a cancer cell model consisting of SH-SY5Y neuroblastoma cells, endogenously expressing the channel. Cells were seeded on different substrates known to stimulate ß1 integrins, such as fibronectin (FN) for HEK-hERG1 and laminin (LMN) for SH-SY5Y. In HEK cells stably overexpressing hERG1, we observed a hERG1 current density increase accompanied by Vrest hyperpolarization after cell seeding onto FN. Notably, a similar behaviour was shown by SH-SY5Y neuroblastoma cells plated onto LMN. Interestingly, we did not observe this phenomenon when plating the cells on substrates such as Bovine Serum Albumin (BSA) or Polylysine (PL), thus suggesting a crucial involvement of ECM proteins as well as of ß1 integrin activation.

4.
Prog Neurobiol ; 214: 102279, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513164

RESUMO

Mutant subunits of the neuronal nicotinic ACh receptor (nAChR) can cause Autosomal Dominant Sleep-related Hypermotor Epilepsy (ADSHE), characterized by frontal seizures during non-rapid eye movement (NREM) sleep. We studied the cellular bases of the pathogenesis in brain slices from mice conditionally expressing the ADSHE-linked ß2V287L nAChR subunit. ß2V287L mice displayed minor structural alterations, except for a ~10% decrease of prefrontal cortex thickness. However, they showed a substantial decrease of the excitatory input to layer V fast-spiking (FS) interneurons, despite a concomitant increase in the number of glutamatergic terminals around the cell soma. Hence, prefrontal hyperexcitability may depend on a permanent impairment of surround inhibition. The effect disappeared when ß2V287L was silenced until postnatal day 15th, suggesting that the transgene selectively affects the maturation of glutamatergic synapses on FS neurons. The other main population of interneurons in layer V was constituted by somatostatin-expressing regular spiking cells. When tested with 10 µM nicotine, these displayed larger somatic nicotinic currents in transgenic mice. Thus, during wakefulness, activation of ß2V287L-containing nAChRs by the high cholinergic tone may counteract hyperexcitability by promoting local inhibition by somatostatin-expressing cells and decreasing the effect of glutamatergic deficit in FS neurons. This interpretation was tested in networks disinhibited by 2 µM bicuculline. Slices expressing ß2V287L were more susceptible to develop synchronized activity in the absence of nicotine. Addition of the drug boosted excitability in the controls, but had little effect in ß2V287L. Our findings suggest why NREM sleep favors ADSHE seizures and nicotine can be palliative in patients.


Assuntos
Epilepsia , Receptores Nicotínicos , Acetilcolina/farmacologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Nicotina/farmacologia , Córtex Pré-Frontal/metabolismo , Receptores Nicotínicos/metabolismo , Convulsões , Sono/fisiologia , Somatostatina
5.
Am J Physiol Cell Physiol ; 322(6): C1138-C1150, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442831

RESUMO

The cellular functions are regulated by a complex interplay of diffuse and local signals. Studying the latter is challenging, but experimental work in cell physiology has led to recognize that understanding a cell's dynamics requires a deep comprehension of local fluctuations of cytosolic regulators. Macromolecular complexes are major determinants of local signaling. Multienzyme assemblies limit the diffusion restriction to reaction kinetics by direct exchange of metabolites. Likewise, close coupling of ion channels and transporters modulates the ion concentration around a channel mouth or transporter binding site. Extreme signal locality is brought about by conformational coupling between membrane proteins, as is typical of mechanotransduction. A paradigmatic case is integrin-mediated cell adhesion. Sensing the extracellular microenvironment and providing an appropriate response are essential in growth and development and have innumerable pathological implications. The process involves bidirectional signal transduction by complex supramolecular structures that link integrin receptors to ion channels and transporters, growth factor receptors, cytoskeletal elements, and other regulatory elements. The dynamics of such complexes are only beginning to be understood. A thoroughly studied example is the association between integrin receptors and the voltage-gated K+ channels Kv11.1. These channels are widely expressed in early embryos, where their physiological roles are poorly understood and apparently different from the shaping of action potential firing in the adult. Hints about these roles come from studies in cancer cells, where Kv11.1 is often overexpressed and appears to reassume functions it presumably exerts during embryogenesis, such as controlling cell proliferation/differentiation, apoptosis, and migration. Kv11.1 is implicated in these processes through its linking to integrin subunits, which in turn regulates channel expression. Specific cellular functions, such as proliferation and migration, appear to be modulated by distinct conformational states of the channel (e.g., open and closed), whose balance is affected by the link with integrin subunits.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Integrinas/metabolismo , Canais Iônicos/metabolismo , Cinética , Transdução de Sinais/fisiologia
6.
Open Biol ; 11(2): 200339, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622105

RESUMO

The hippocampus is a brain area central for cognition. Mutations in the human SOX2 transcription factor cause neurodevelopmental defects, leading to intellectual disability and seizures, together with hippocampal dysplasia. We generated an allelic series of Sox2 conditional mutations in mouse, deleting Sox2 at different developmental stages. Late Sox2 deletion (from E11.5, via Nestin-Cre) affects only postnatal hippocampal development; earlier deletion (from E10.5, Emx1-Cre) significantly reduces the dentate gyrus (DG), and the earliest deletion (from E9.5, FoxG1-Cre) causes drastic abnormalities, with almost complete absence of the DG. We identify a set of functionally interconnected genes (Gli3, Wnt3a, Cxcr4, p73 and Tbr2), known to play essential roles in hippocampal embryogenesis, which are downregulated in early Sox2 mutants, and (Gli3 and Cxcr4) directly controlled by SOX2; their downregulation provides plausible molecular mechanisms contributing to the defect. Electrophysiological studies of the Emx1-Cre mouse model reveal altered excitatory transmission in CA1 and CA3 regions.


Assuntos
Giro Denteado/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXB1/metabolismo , Potenciais de Ação , Animais , Linhagem Celular Tumoral , Giro Denteado/citologia , Giro Denteado/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Fatores de Transcrição SOXB1/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
7.
Data Brief ; 34: 106668, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385031

RESUMO

In the present work, applying the whole-cell patch-clamp technique in voltage clamp mode, we have investigated the effects of different drugs, such as riluzole, Psora-4 and Tram-34, on the potassium currents in four human lymphoma cell lines. We focused on outward currents mediated by two potassium channels (Kv1.3 and KCa3.1), which are known to play a key physiological role in lymphoid cells. The currents were evoked by voltage ramps ranging from -120 mV to +40 mV and the conductance of the two potassium channels was measured between +20 mV and +40 mV, both in the absence and in the presence of the specific blockers Psora-4 (Kv1.3; 1 µM) and Tram-34 (KCa3.1; 1 µM). The effect of the latter was tested after KCa3.1 channels were activated by riluzole 10 µM. Taken together, these data could be useful as an indication of the functional characteristics of the potassium channels in human lymphomas and represent a starting point for the study of potassium conductance in cellular models of these tumors.

8.
Front Pharmacol ; 11: 848, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587517

RESUMO

Increasing evidence indicates that ion channels and transporters cooperate in regulating different aspects of tumor pathophysiology. In cancer cells, H+/HCO3 - transporters usually invert the transmembrane pH gradient typically observed in non-neoplastic cells, which is thought to contribute to cancer malignancy. To what extent the pH-regulating transporters are functionally linked to K+ channels, which are central regulators of cell membrane potential (Vm), is unclear. We thus investigated in colorectal cancer cells the implication of the pH-regulating transporters and KV11.1 (also known as hERG1) in the pH modifications stimulated by integrin-dependent cell adhesion. Colorectal cancer cell lines (HCT 116 and HT 29) were seeded onto ß1 integrin-dependent substrates, collagen I and fibronectin. This led to a transient cytoplasmic alkalinization, which peaked at 90 min of incubation, lasted approximately 180 min, and was inhibited by antibodies blocking the ß1 integrin. The effect was sensitive to amiloride (10 µM) and cariporide (5 µM), suggesting that it was mainly caused by the activity of the Na+/H+ antiporter NHE1. Blocking KV11.1 with E4031 shows that channel activity contributed to modulate the ß1 integrin-dependent pHi increase. Interestingly, both NHE1 and KV11.1 modulated the colorectal cancer cell motility triggered by ß1 integrin-dependent adhesion. Finally, the ß1 integrin subunit, KV11.1 and NHE1 co-immunoprecipitated in colorectal cancer cells seeded onto Collagen I, suggesting the formation of a macromolecular complex following integrin-mediated adhesion. We conclude that the interaction between KV11.1, NHE1, and ß1 integrin contributes to regulate colorectal cancer intracellular pH in relation to the tumor microenvironment, suggesting novel pharmacological targets to counteract pro-invasive and, hence, pro-metastatic behavior in colorectal cancer.

9.
Can J Neurol Sci ; 47(6): 800-809, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32536355

RESUMO

PURPOSE: Our purpose was to determine the role of CHRNA4 and CHRNB2 in insular epilepsy. METHOD: We identified two patients with drug-resistant predominantly sleep-related hypermotor seizures, one harboring a heterozygous missense variant (c.77C>T; p. Thr26Met) in the CHRNB2 gene and the other a heterozygous missense variant (c.1079G>A; p. Arg360Gln) in the CHRNA4 gene. The patients underwent electrophysiological and neuroimaging studies, and we performed functional characterization of the p. Thr26Met (c.77C>T) in the CHRNB2 gene. RESULTS: We localized the epileptic foci to the left insula in the first case (now seizure-free following epilepsy surgery) and to both insulae in the second case. Based on tools predicting the possible impact of amino acid substitutions on the structure and function of proteins (sorting intolerant from tolerant and PolyPhen-2), variants identified in this report could be deleterious. Functional expression in human cell lines of α4ß2 (wild-type), α4ß2-Thr26Met (homozygote), and α4ß2/ß2-Thr26Met (heterozygote) nicotinic acetylcholine receptors revealed that the mutant subunit led to significantly higher whole-cell nicotinic currents. This feature was observed in both homo- and heterozygous conditions and was not accompanied by major alterations of the current reversal potential or the shape of the concentration-response relation. CONCLUSIONS: This study suggests that variants in CHRNB2 and CHRNA4, initially linked to autosomal dominant nocturnal frontal lobe epilepsy, are also found in patients with predominantly sleep-related insular epilepsy. Although the reported variants should be considered of unknown clinical significance for the moment, identification of additional similar cases and further functional studies could eventually strengthen this association.


Assuntos
Epilepsia do Lobo Frontal , Receptores Nicotínicos , Córtex Cerebral , Epilepsia do Lobo Frontal/genética , Humanos , Mutação de Sentido Incorreto , Receptores Nicotínicos/genética
10.
Cell Death Dis ; 11(3): 209, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32231201

RESUMO

The financial support for this Article was not fully acknowledged. The acknowledgements should have included the following: We thank M. Lulli (University of Florence, Italy) for acquiring images of immunofluorescence-labeled cells. This work was supported by grants from Associazione Italiana per la Ricerca sul Cancro (#15627, #21510 and #19766 to A.A.); PAR FAS-Linea di Azione 1.1-Azione 1.1.2-Bando FAS Salute. 2014 (DD 4042/ 2014) Project OMITERC to A.A.; FAR 2018 to A.B.

11.
Cell Death Dis ; 11(3): 161, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123164

RESUMO

We have studied how the macrolide antibiotic Clarithromycin (Cla) regulates autophagy, which sustains cell survival and resistance to chemotherapy in cancer. We found Cla to inhibit the growth of human colorectal cancer (CRC) cells, by modulating the autophagic flux and triggering apoptosis. The accumulation of cytosolic autophagosomes accompanied by the modulation of autophagic markers LC3-II and p62/SQSTM1, points to autophagy exhaustion. Because Cla is known to bind human Ether-à-go-go Related Gene 1 (hERG1) K+ channels, we studied if its effects depended on hERG1 and its conformational states. By availing of hERG1 mutants with different gating properties, we found that fluorescently labelled Cla preferentially bound to the closed channels. Furthermore, by sequestering the channel in the closed conformation, Cla inhibited the formation of a macromolecular complex between hERG1 and the p85 subunit of PI3K. This strongly reduced Akt phosphorylation, and stimulated the p53-dependent cell apoptosis, as witnessed by late caspase activation. Finally, Cla enhanced the cytotoxic effect of 5-fluorouracil (5-FU), the main chemotherapeutic agent in CRC, in vitro and in a xenograft CRC model. We conclude that Cla affects the autophagic flux by impairing the signaling pathway linking hERG1 and PI3K. Combining Cla with 5-FU might be a novel therapeutic option in CRC.


Assuntos
Autofagia/efeitos dos fármacos , Claritromicina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo
12.
Data Brief ; 26: 104406, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31508470

RESUMO

Macrolide antibiotics, such as Clarithromycin (Cla), have been proven to exert anti-tumour activity in several preclinical models of different types of cancer. Cla can exert its anti-tumour effects through different mechanisms, e.g. by blocking the autophagic flux, inducing apoptosis or inhibiting tumour-induced angiogenesis. The clinical benefit of Cla in treating various tumours in combination with conventional treatment was confirmed in extensive clinical studies in patients suffering from non-small cell lung cancer, breast cancer, multiple myeloma and other haematological malignancies. Data regarding the anti-cancer effect of Cla on Colorectal Cancer (CRC) are still lacking. This article shares data on the in vivo efficacy of Cla in two xenograft models of CRC. Our results show that Cla treatment reduces tumour growth and increases the overall survival in CRC mouse xenograft models. Moreover, the Western blot analysis of autophagic and apoptotic markers suggests that the anti-tumour effects of Cla are related to a modulation of both cellular processes. The data suggest that it will worth consider Cla as treatment option for CRC patients.

13.
Cancers (Basel) ; 11(2)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678127

RESUMO

Cell migration exerts a pivotal role in tumor progression, underlying cell invasion and metastatic spread. The cell migratory program requires f-actin re-organization, generally coordinated with the assembly of focal adhesions. Ion channels are emerging actors in regulating cell migration, through different mechanisms. We studied the role of the voltage dependent potassium channel KV 11.1 on cell migration of pancreatic ductal adenocarcinoma (PDAC) cells, focusing on its effects on f-actin organization and dynamics. Cells were cultured either on fibronectin (FN) or on a desmoplastic matrix (DM) with the addition of a conditioned medium produced by pancreatic stellate cells (PSC) maintained in hypoxia (Hypo-PSC-CM), to better mimic the PDAC microenvironment. KV11.1 was essential to maintain stress fibers in a less organized arrangement in cells cultured on FN. When PDAC cells were cultured on DM plus Hypo-PSC-CM, KV11.1 activity determined the organization of cortical f-actin into sparse and long filopodia, and allowed f-actin polymerization at a high speed. In both conditions, blocking KV11.1 impaired PDAC cell migration, and, on cells cultured onto FN, the effect was accompanied by a decrease of basal intracellular Ca2+ concentration. We conclude that KV11.1 is implicated in sustaining pro-metastatic signals in pancreatic cancer, through a reorganization of f-actin in stress fibers and a modulation of filopodia formation and dynamics.

14.
Trends Cell Biol ; 29(4): 298-307, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30635161

RESUMO

Cell-matrix adhesion determines the choice between different cell fates and is accompanied by substantial changes in ion transport. The greatest evidence is the bidirectional interplay occurring between integrin receptors and K+ channels. These proteins can form signaling hubs that regulate cell proliferation, differentiation, and migration in normal and neoplastic tissue. Recent results show that the physical interaction with integrins determines the balance of the open and closed K+ channel states, and individual channel conformations regulate distinct downstream pathways. We propose a model of how these mechanisms regulate proliferation and metastasis in cancer cells. In particular, we suggest that the neoplastic progression could be modulated by targeting specific ion channel conformations.


Assuntos
Integrinas/metabolismo , Canais Iônicos/metabolismo , Transdução de Sinais , Animais , Proliferação de Células , Humanos , Canais Iônicos/química , Neoplasias/metabolismo , Neoplasias/patologia
15.
Br J Cancer ; 118(2): 200-212, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29161243

RESUMO

BACKGROUND: Platinum-based drugs such as Cisplatin are commonly employed for cancer treatment. Despite an initial therapeutic response, Cisplatin treatment often results in the development of chemoresistance. To identify novel approaches to overcome Cisplatin resistance, we tested Cisplatin in combination with K+ channel modulators on colorectal cancer (CRC) cells. METHODS: The functional expression of Ca2+-activated (KCa3.1, also known as KCNN4) and voltage-dependent (Kv11.1, also known as KCNH2 or hERG1) K+ channels was determined in two CRC cell lines (HCT-116 and HCT-8) by molecular and electrophysiological techniques. Cisplatin and several K+ channel modulators were tested in vitro for their action on K+ currents, cell vitality, apoptosis, cell cycle, proliferation, intracellular signalling and Platinum uptake. These effects were also analysed in a mouse model mimicking Cisplatin resistance. RESULTS: Cisplatin-resistant CRC cells expressed higher levels of KCa3.1 and Kv11.1 channels, compared with Cisplatin-sensitive CRC cells. In resistant cells, KCa3.1 activators (SKA-31) and Kv11.1 inhibitors (E4031) had a synergistic action with Cisplatin in triggering apoptosis and inhibiting proliferation. The effect was maximal when KCa3.1 activation and Kv11.1 inhibition were combined. In fact, similar results were produced by Riluzole, which is able to both activate KCa3.1 and inhibit Kv11.1. Cisplatin uptake into resistant cells depended on KCa3.1 channel activity, as it was potentiated by KCa3.1 activators. Kv11.1 blockade led to increased KCa3.1 expression and thereby stimulated Cisplatin uptake. Finally, the combined administration of a KCa3.1 activator and a Kv11.1 inhibitor also overcame Cisplatin resistance in vivo. CONCLUSIONS: As Riluzole, an activator of KCa3.1 and inhibitor of Kv11.1 channels, is in clinical use, our results suggest that this compound may be useful in the clinic to improve Cisplatin efficacy and overcome Cisplatin resistance in CRC.


Assuntos
Cisplatino/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzotiazóis/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacocinética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Canal de Potássio ERG1/metabolismo , Células HCT116 , Células HT29 , Humanos , Concentração Inibidora 50 , Camundongos , Bloqueadores dos Canais de Potássio/farmacologia , Pirazóis/farmacologia , Riluzol/farmacologia
16.
Sci Signal ; 10(473)2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28377405

RESUMO

Ion channels regulate cell proliferation, differentiation, and migration in normal and neoplastic cells through cell-cell and cell-extracellular matrix (ECM) transmembrane receptors called integrins. K+ flux through the human ether-à-go-go-related gene 1 (hERG1) channel shapes action potential firing in excitable cells such as cardiomyocytes. Its abundance is often aberrantly high in tumors, where it modulates integrin-mediated signaling. We found that hERG1 interacted with the ß1 integrin subunit at the plasma membrane of human cancer cells. This interaction was not detected in cardiomyocytes because of the presence of the hERG1 auxiliary subunit KCNE1 (potassium voltage-gated channel subfamily E regulatory subunit 1), which blocked the ß1 integrin-hERG1 interaction. Although open hERG1 channels did not interact as strongly with ß1 integrins as did closed channels, current flow through hERG1 channels was necessary to activate the integrin-dependent phosphorylation of Tyr397 in focal adhesion kinase (FAK) in both normal and cancer cells. In immunodeficient mice, proliferation was inhibited in breast cancer cells expressing forms of hERG1 with impaired K+ flow, whereas metastasis of breast cancer cells was reduced when the hERG1/ß1 integrin interaction was disrupted. We conclude that the interaction of ß1 integrins with hERG1 channels in cancer cells stimulated distinct signaling pathways that depended on the conformational state of hERG1 and affected different aspects of tumor progression.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Integrina beta1/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Progressão da Doença , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Transferência Ressonante de Energia de Fluorescência , Células HCT116 , Células HEK293 , Humanos , Immunoblotting , Integrina beta1/química , Integrina beta1/genética , Camundongos Nus , Camundongos SCID , Microscopia Confocal , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica , Conformação Proteica , Transplante Heterólogo
17.
Clin Cancer Res ; 23(1): 3-5, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903676

RESUMO

In this issue of Clinical Cancer Research, evidence is provided on how to avoid cardiotoxicity when targeting hERG K+ channel for cancer therapy. hERG regulates different aspects of neoplastic progression. Although its blockade has effective anticancer effects in experimental models, it may lead to fatal arrhythmias in humans. Clin Cancer Res; 23(1); 3-5. ©2016 AACRSee related article by Pointer et al., p. 73.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Antineoplásicos/uso terapêutico , Humanos , Terapia de Alvo Molecular , Bloqueadores dos Canais de Potássio/uso terapêutico
18.
Front Pharmacol ; 6: 201, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441658

RESUMO

Regulation of the "neuronal" nicotinic acetylcholine receptors (nAChRs) is implicated in both tobacco addiction and smoking-dependent tumor promotion. Some of these effects are caused by the tobacco-derived N-nitrosamines, which are carcinogenic compounds that avidly bind to nAChRs. However, the functional effects of these drugs on specific nAChR subtypes are largely unknown. By using patch-clamp methods, we tested 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) on human α4ß2 nAChRs. These latter are widely distributed in the mammalian brain and are also frequently expressed outside the nervous system. NNK behaved as a partial agonist, with an apparent EC50 of 16.7 µM. At 100 µM, it activated 16% of the maximal current activated by nicotine. When NNK was co-applied with nicotine, it potentiated the currents elicited by nicotine concentrations ≤ 100 nM. At higher concentrations of nicotine, NNK always inhibited the α4ß2 nAChR. In contrast, NNN was a pure inhibitor of this nAChR subtype, with IC50 of approximately 1 nM in the presence of 10 µM nicotine. The effects of both NNK and NNN were mainly competitive and largely independent of Vm. The different actions of NNN and NNK must be taken into account when interpreting their biological effects in vitro and in vivo.

19.
Drug Resist Updat ; 21-22: 11-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26183291

RESUMO

By controlling ion fluxes at multiple time scales, ion channels shape rapid cell signals, such as action potential and synaptic transmission, as well as much slower processes, such as mitosis and cell migration. As is currently increasingly recognized, a variety of channel types are involved in cancer hallmarks, and regulate specific stages of neoplastic progression. Long-term in vitro work has established that inhibition of these ion channels impairs the growth of cancer cells. Recently, these studies have been followed up in vivo, hence revealing that ion channels constitute promising pharmacological targets in oncology. The channel proteins can be often accessed from the extracellular milieu, which allows use of lower drug doses and decrease untoward toxicity. However, because of the central physiological roles exerted by ion channels in excitable cells, other types of side effects may arise, the gravest of which is cardiac arrhythmia. A paradigmatic case is offered by Kv11.1 (hERG1) channels. HERG1 blockers attenuate the progression of both hematologic malignancies and solid tumors, but may also lead to the lengthening of the electrocardiographic QT interval, thus predisposing the patient to ventricular arrhythmias. These side effects can be avoided by specifically inhibiting the channel isoforms which are highly expressed in certain tumors, such as Kv11.1B and the neonatal forms of voltage-gated Na(+) channels. Preclinical studies are also being explored in breast and prostate cancer (targeting voltage-gated Na(+) channels), and gliomas (targeting CLC-3). Overall, the possible approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1) the development of specific inhibitors for the channel subtypes expressed in specific tumors; (2) drug delivery into the tumor by using antibodies or nanotechnology-based approaches; (3) combination regimen therapy and (4) blocking specific conformational states of the ion channel. We believe that expanding this relatively neglected field of oncology research might lead to unforeseen therapeutic benefits for cancer patients.


Assuntos
Antineoplásicos/farmacologia , Canais Iônicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Terapia de Alvo Molecular , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Mol Pharmacol ; 87(2): 183-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25411366

RESUMO

KV11.1 (hERG1) channels are often overexpressed in human cancers. In leukemias, KV11.1 regulates pro-survival signals that promote resistance to chemotherapy, raising the possibility that inhibitors of KV11.1 could be therapeutically beneficial. However, because of the role of KV11.1 in cardiac repolarization, blocking these channels may cause cardiac arrhythmias. We show that CD-160130, a novel pyrimido-indole compound, blocks KV11.1 channels with a higher efficacy for the KV11.1 isoform B, in which the IC50 (1.8 µM) was approximately 10-fold lower than observed in KV11.1 isoform A. At this concentration, CD-160130 also had minor effects on Kir2.1, KV 1.3, Kv1.5, and KCa3.1. In vitro, CD-160130 induced leukemia cell apoptosis, and could overcome bone marrow mesenchymal stromal cell (MSC)-induced chemoresistance. This effect was caused by interference with the survival signaling pathways triggered by MSCs. In vivo, CD-160130 produced an antileukemic activity, stronger than that caused by cytarabine. Consistent with its atypical target specificity, CD-160130 did not bind to the main binding site of the arrhythmogenic KV11.1 blockers (the Phe656 pore residue). Importantly, in guinea pigs CD-160130 produced neither alteration of the cardiac action potential shape in dissociated cardiomyocytes nor any lengthening of the QT interval in vivo. Moreover, CD-160130 had no myelotoxicity on human bone marrow-derived cells. Therefore, CD-160130 is a promising first-in-class compound to attempt oncologic therapy without cardiotoxicity, based on targeting KV11.1. Because leukemia and cardiac cells tend to express different ratios of the A and B KV11.1 isoforms, the pharmacological properties of CD-160130 may depend, at least in part, on isoform specificity.


Assuntos
Antineoplásicos/farmacologia , Cardiotoxinas , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Indóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinonas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Cobaias , Células HEK293 , Células HL-60 , Humanos , Indóis/química , Indóis/uso terapêutico , Leucemia de Células B/tratamento farmacológico , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Masculino , Camundongos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Pirimidinas/uso terapêutico , Pirimidinonas/química , Pirimidinonas/uso terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA