Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39014219

RESUMO

Reactive oxygen species (ROS) including the superoxide anion (O2•-) are typically studied in cell cultures using fluorescent dyes, which provide only discrete single-point measurements. These methods lack the capabilities for assessing O2•- kinetics and release in a quantitative manner over long monitoring times. Herein, we present the fabrication and application of an electrochemical biosensor that enables real-time continuous monitoring of O2•- release in cell cultures for extended periods (> 8 h) using an O2•- specific microelectrode. To achieve the sensitivity and selectivity requirements for cellular sensing, we developed a biohybrid system consisting of superoxide dismutase (SOD) and Ti3C2Tx MXenes, deposited on a gold microwire electrode (AuME) as O2•- specific materials with catalytic amplification through the synergistic action of the enzyme and the biomimetic MXenes-based structure. The biosensor demonstrated a sensitivity of 18.35 nA/µM with a linear range from 147 to 930 nM in a cell culture medium. To demonstrate its robustness and practicality, we applied the biosensor to monitor O2•- levels in human leukemia monocytic THP-1 cells upon stimulation with lipopolysaccharide (LPS). Using this strategy, we successfully monitored LPS-induced O2•- in THP-1 cells, as well as the quenching effect induced by the ROS scavenger N-acetyl-L-cysteine (NAC). The biosensor is generally useful for exploring the role of oxidative stress and longitudinally monitoring O2•- release in cell cultures, enabling studies of biochemical processes and associated oxidative stress mechanisms in cellular and other biological environments.

2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542284

RESUMO

Climate change, particularly drought stress, significantly impacts plant growth and development, necessitating the development of resilient crops. This study investigated physiological and molecular modulations to drought stress between diploid parent species and their polyploid progeny in the Brassica species. While no significant phenotypic differences were observed among the six species, drought stress reduced growth parameters by 2.4% and increased oxidative stress markers by 1.4-fold. Drought also triggered the expression of genes related to stress responses and led to the accumulation of specific metabolites. We also conducted the first study of perfluorooctane sulfonic acid (PFOS) levels in leaves as a drought indicator. Lower levels of PFOS accumulation were linked to plants taking in less water under drought conditions. Both diploid and polyploid species responded to drought stress similarly, but there was a wide range of variation in their responses. In particular, responses were less variable in polyploid species than in diploid species. This suggests that their additional genomic components acquired through polyploidy may improve their flexibility to modulate stress responses. Despite the hybrid vigor common in polyploid species, Brassica polyploids demonstrated intermediate responses to drought stress. Overall, this study lays the framework for future omics-level research, including transcriptome and proteomic studies, to deepen our understanding of drought tolerance mechanisms in Brassica species.


Assuntos
Brassica , Brassica/genética , Estresse Fisiológico/genética , Secas , Proteômica , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA