Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Causes Control ; 31(8): 767-776, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32462559

RESUMO

PURPOSE: Air pollution and smoking are associated with various types of mortality, including cancer. The current study utilizes a publicly accessible, nationally representative cohort to explore relationships between fine particulate matter (PM2.5) exposure, smoking, and cancer mortality. METHODS: National Health Interview Survey and mortality follow-up data were combined to create a study population of 635,539 individuals surveyed from 1987 to 2014. A sub-cohort of 341,665 never-smokers from the full cohort was also created. Individuals were assigned modeled PM2.5 exposure based on average exposure from 1999 to 2015 at residential census tract. Cox Proportional Hazard models were utilized to estimate hazard ratios for cancer-specific mortality controlling for age, sex, race, smoking status, body mass, income, education, marital status, rural versus urban, region, and survey year. RESULTS: The risk of all cancer mortality was adversely associated with PM2.5 (per 10 µg/m3 increase) in the full cohort (hazard ratio [HR] 1.15, 95% confidence interval [CI] 1.08-1.22) and the never-smokers' cohort (HR 1.19, 95% CI 1.06-1.33). PM2.5-morality associations were observed specifically for lung, stomach, colorectal, liver, breast, cervix, and bladder, as well as Hodgkin lymphoma, non-Hodgkin lymphoma, and leukemia. The PM2.5-morality association with lung cancer in never-smokers was statistically significant adjusting for multiple comparisons. Cigarette smoking was statistically associated with mortality for many cancer types. CONCLUSIONS: Exposure to PM2.5 air pollution contributes to lung cancer mortality and may be a risk factor for other cancer types. Cigarette smoking has a larger impact on cancer mortality than PM2.5 , but is associated with similar cancer types.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Fumar Cigarros/efeitos adversos , Fumar Cigarros/mortalidade , Neoplasias/etiologia , Neoplasias/mortalidade , Material Particulado/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Fatores de Risco , Estados Unidos/epidemiologia , Adulto Jovem
2.
PLoS Med ; 16(7): e1002856, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31335874

RESUMO

BACKGROUND: Exposure to fine particulate matter pollution (PM2.5) is hazardous to health. Our aim was to directly estimate the health and longevity impacts of current PM2.5 concentrations and the benefits of reductions from 1999 to 2015, nationally and at county level, for the entire contemporary population of the contiguous United States. METHODS AND FINDINGS: We used vital registration and population data with information on sex, age, cause of death, and county of residence. We used four Bayesian spatiotemporal models, with different adjustments for other determinants of mortality, to directly estimate mortality and life expectancy loss due to current PM2.5 pollution and the benefits of reductions since 1999, nationally and by county. The covariates included in the adjusted models were per capita income; percentage of population whose family income is below the poverty threshold, who are of Black or African American race, who have graduated from high school, who live in urban areas, and who are unemployed; cumulative smoking; and mean temperature and relative humidity. In the main model, which adjusted for these covariates and for unobserved county characteristics through the use of county-specific random intercepts, PM2.5 pollution in excess of the lowest observed concentration (2.8 µg/m3) was responsible for an estimated 15,612 deaths (95% credible interval 13,248-17,945) in females and 14,757 deaths (12,617-16,919) in males. These deaths would lower national life expectancy by an estimated 0.15 years (0.13-0.17) for women and 0.13 years (0.11-0.15) for men. The life expectancy loss due to PM2.5 was largest around Los Angeles and in some southern states such as Arkansas, Oklahoma, and Alabama. At any PM2.5 concentration, life expectancy loss was, on average, larger in counties with lower income and higher poverty rate than in wealthier counties. Reductions in PM2.5 since 1999 have lowered mortality in all but 14 counties where PM2.5 increased slightly. The main limitation of our study, similar to other observational studies, is that it is not guaranteed for the observed associations to be causal. We did not have annual county-level data on other important determinants of mortality, such as healthcare access and quality and diet, but these factors were adjusted for with use of county-specific random intercepts. CONCLUSIONS: According to our estimates, recent reductions in particulate matter pollution in the USA have resulted in public health benefits. Nonetheless, we estimate that current concentrations are associated with mortality impacts and loss of life expectancy, with larger impacts in counties with lower income and higher poverty rate.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Expectativa de Vida , Material Particulado/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Criança , Pré-Escolar , Feminino , Humanos , Renda , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Pobreza , Características de Residência , Medição de Risco , Fatores de Risco , Fatores Sexuais , Determinantes Sociais da Saúde , Análise Espaço-Temporal , Fatores de Tempo , Estados Unidos/epidemiologia , Adulto Jovem
3.
Environ Health Perspect ; 127(7): 77007, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31339350

RESUMO

BACKGROUND: Evidence indicates that air pollution contributes to cardiopulmonary mortality. There is ongoing debate regarding the size and shape of the pollution­mortality exposure­response relationship. There are also growing appeals for estimates of pollution­mortality relationships that use public data and are based on large, representative study cohorts. OBJECTIVES: Our goal was to evaluate fine particulate matter air pollution ([Formula: see text]) and mortality using a large cohort that is representative of the U.S. population and is based on public data. Additional objectives included exploring model sensitivity, evaluating relative effects across selected subgroups, and assessing the shape of the [Formula: see text]­mortality relationship. METHODS: National Health Interview Surveys (1986­2014), with mortality linkage through 2015, were used to create a cohort of 1,599,329 U.S. adults and a subcohort with information on smoking and body mass index (BMI) of 635,539 adults. Data were linked with modeled ambient [Formula: see text] at the census-tract level. Cox proportional hazards models were used to estimate [Formula: see text]­mortality hazard ratios for all-cause and specific causes of death while controlling for individual risk factors and regional and urban versus rural differences. Sensitivity and subgroup analyses were conducted and the shape of the [Formula: see text]­mortality relationship was explored. RESULTS: Estimated mortality hazard ratios, per [Formula: see text] long-term exposure to [Formula: see text], were 1.12 (95% CI: 1.08, 1.15) for all-cause mortality, 1.23 (95% CI: 1.17, 1.29) for cardiopulmonary mortality, and 1.12 (95% CI: 1.00, 1.26) for lung cancer mortality. In general, [Formula: see text]­mortality associations were consistently positive for all-cause and cardiopulmonary mortality across key modeling choices and across subgroups of sex, age, race-ethnicity, income, education levels, and geographic regions. DISCUSSION: This large, nationwide, representative cohort of U.S. adults provides robust evidence that long-term [Formula: see text] exposure contributes to cardiopulmonary mortality risk. The ubiquitous and involuntary nature of exposures and the broadly observed effects across subpopulations underscore the public health importance of breathing clean air. https://doi.org/10.1289/EHP4438.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Doenças Cardiovasculares/mortalidade , Exposição Ambiental/efeitos adversos , Material Particulado/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA