Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38552317

RESUMO

OBJECTIVE: The vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is a complex immune disorder consequence of somatic UBA1 variants. Most reported pathogenic UBA1 variants are missense or splice site mutations directly impairing the translational start site at p. Met41, with recent studies showing that these variants are frequent causes of recurrent inflammation in older individuals. Here we aimed to characterize a novel UBA1 variant found in two patients clinically presenting with VEXAS syndrome. METHODS: Patients' data were collected from direct assessments and from their medical charts. Genomics analyses were performed by both Sanger and amplicon-based deep sequencing, mRNA studies were performed by both cDNA subcloning and mRNA sequencing. RESULTS: We report a novel, somatic variant in a canonical splice site of the UBA1 gene (c.346-2A>G), which was identified in two unrelated adult male patients with late-onset, unexplained inflammatory manifestations including recurrent fever, Sweet syndrome-like neutrophilic dermatosis, and lung inflammation responsive only to glucocorticoids. RNA analysis from patients' samples demonstrated aberrant mRNA splicing leading to multiple in-frame transcripts, including a transcript retaining the full sequence of intron 4 and a different transcript with the deletion of the first 15 nucleotides of exon 5. CONCLUSION: Here we describe the abnormal UBA1 transcription as a consequence of the novel c.346-2A>G variant identified in two patients with clinical features compatible with VEXAS syndrome. Overall, these results further demonstrate the expanding spectrum of variants in UBA1 leading to pathology and support for a complete gene evaluation in those candidate patients for VEXAS syndrome.

2.
EMBO J ; 43(10): 1919-1946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360993

RESUMO

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms. Here, by dissecting VEXAS-causing UBA1 mutations, we discovered that p.Met41 mutations alter cytoplasmic isoform expression, whereas other mutations reduce catalytic activity of nuclear and cytoplasmic isoforms by diverse mechanisms, including aberrant oxyester formation. Strikingly, non-p.Met41 mutations most prominently affect transthioesterification, revealing ubiquitin transfer to cytoplasmic E2 enzymes as a shared property of pathogenesis amongst different VEXAS syndrome genotypes. A similar E2 charging bottleneck exists in some lung cancer-associated UBA1 mutations, but not in spinal muscular atrophy-causing UBA1 mutations, which instead, render UBA1 thermolabile. Collectively, our results highlight the precision of conformational changes required for faithful ubiquitin transfer, define distinct and shared mechanisms of UBA1 inactivation in diverse diseases, and suggest that specific E1-E2 modules control different aspects of tissue differentiation and maintenance.


Assuntos
Enzimas Ativadoras de Ubiquitina , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Humanos , Mutação de Sentido Incorreto , Ubiquitina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo
3.
Annu Rev Pathol ; 19: 479-506, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37832948

RESUMO

Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.


Assuntos
Neoplasias Hematológicas , Síndromes Mielodisplásicas , Humanos , Hematopoiese Clonal , Envelhecimento , Inflamação , Hematopoese
4.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873213

RESUMO

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms. Here, by dissecting VEXAS-causing UBA1 mutations, we discovered that p.Met41 mutations alter cytoplasmic isoform expression, whereas other mutations reduce catalytic activity of nuclear and cytoplasmic isoforms by diverse mechanisms, including aberrant oxyester formation. Strikingly, non-p.Met41 mutations most prominently affect transthioesterification, revealing ubiquitin transfer to cytoplasmic E2 enzymes as a shared property of pathogenesis amongst different VEXAS syndrome genotypes. A similar E2 charging bottleneck exists in some lung cancer-associated UBA1 mutations, but not in spinal muscular atrophy-causing UBA1 mutations, which instead, render UBA1 thermolabile. Collectively, our results highlight the precision of conformational changes required for faithful ubiquitin transfer, define distinct and shared mechanisms of UBA1 inactivation in diverse diseases, and suggest that specific E1-E2 modules control different aspects of tissue differentiation and maintenance.

5.
Cell Rep Med ; 4(8): 101160, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586319

RESUMO

VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a pleiotropic, severe autoinflammatory disease caused by somatic mutations in the ubiquitin-like modifier activating enzyme 1 (UBA1) gene. To elucidate VEXAS pathophysiology, we performed transcriptome sequencing of single bone marrow mononuclear cells and hematopoietic stem and progenitor cells (HSPCs) from VEXAS patients. HSPCs are biased toward myeloid (granulocytic) differentiation, and against lymphoid differentiation in VEXAS. Activation of multiple inflammatory pathways (interferons and tumor necrosis factor alpha) occurs ontogenically early in primitive hematopoietic cells and particularly in the myeloid lineage in VEXAS, and inflammation is prominent in UBA1-mutated cells. Dysregulation in protein degradation likely leads to higher stress response in VEXAS HSPCs, which positively correlates with inflammation. TCR usage is restricted and there are increased cytotoxicity and IFN-γ signaling in T cells. In VEXAS syndrome, both aberrant inflammation and myeloid predominance appear intrinsic to hematopoietic stem cells mutated in UBA1.


Assuntos
Células-Tronco Hematopoéticas , Inflamação , Humanos , Proteólise , Diferenciação Celular , Inflamação/genética
6.
Blood ; 142(3): 244-259, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37084382

RESUMO

Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is caused by somatic mutations in UBA1 (UBA1mut) and characterized by heterogenous systemic autoinflammation and progressive hematologic manifestations, meeting criteria for myelodysplastic syndrome (MDS) and plasma cell dyscrasias. The landscape of myeloid-related gene mutations leading to typical clonal hematopoiesis (CH) in these patients is unknown. Retrospectively, we screened 80 patients with VEXAS for CH in their peripheral blood (PB) and correlated the findings with clinical outcomes in 77 of them. UBA1mut were most common at hot spot p.M41 (median variant allele frequency [VAF] = 75%). Typical CH mutations cooccurred with UBA1mut in 60% of patients, mostly in DNMT3A and TET2, and were not associated with inflammatory or hematologic manifestations. In prospective single-cell proteogenomic sequencing (scDNA), UBA1mut was the dominant clone, present mostly in branched clonal trajectories. Based on integrated bulk and scDNA analyses, clonality in VEXAS followed 2 major patterns: with either typical CH preceding UBA1mut selection in a clone (pattern 1) or occurring as an UBA1mut subclone or in independent clones (pattern 2). VAF in the PB differed markedly between DNMT3A and TET2 clones (median VAF of 25% vs 1%). DNMT3A and TET2 clones associated with hierarchies representing patterns 1 and 2, respectively. Overall survival for all patients was 60% at 10 years. Transfusion-dependent anemia, moderate thrombocytopenia, and typical CH mutations, each correlated with poor outcome. In VEXAS, UBA1mut cells are the primary cause of systemic inflammation and marrow failure, being a new molecularly defined somatic entity associated with MDS. VEXAS-associated MDS is distinct from classical MDS in its presentation and clinical course.


Assuntos
Hematopoiese Clonal , Dermatite , Humanos , Hematopoiese Clonal/genética , Estudos Prospectivos , Estudos Retrospectivos , Mutação
7.
Arthritis Rheumatol ; 75(7): 1285-1290, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36762418

RESUMO

OBJECTIVE: Somatic mutations in UBA1 have recently been causally linked to a severe adult-onset inflammatory condition referred to as VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Ubiquitin-activating enzyme E1 (UBA-1) is of fundamental importance to the modulation of ubiquitin homeostasis and to the majority of downstream ubiquitylation-dependent cellular processes. Direct sequencing analysis of exon 3 containing the prevalent variants p.Met41Leu, p.Met41Val, and/or p.Met41Thr is usually used to confirm the disease-associated mutations. METHODS: We studied the clinical, biochemical, and molecular genetic characteristics of a 59-year-old man with a 2-year history of arthritis, fever, night sweats, nonspecific skin rash, lymphadenopathy, and myelodysplastic syndrome with multilineage dysplasia. RESULTS: The mutational analysis revealed a previously undescribed sequence variant c.1430G>C in exon 14 (p.Gly477Ala) in the gene UBA1. In vitro enzymatic analyses showed that p.Gly477Ala led to both decreased E1 ubiquitin thioester formation and E2 enzyme charging. CONCLUSION: We report a case of a patient of European ancestry with clinical manifestations of VEXAS syndrome associated with a newly identified dysfunctional UBA-1 enzyme variant. Due to the patient's insufficient response to various immunosuppressive treatments, allogeneic hematopoietic stem cell transplantation was performed, which resulted in significant improvement of clinical and laboratory manifestations of the disease.


Assuntos
Síndromes Mielodisplásicas , Enzimas Ativadoras de Ubiquitina , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Enzimas Ativadoras de Ubiquitina/genética , Pacientes , Ubiquitinas , Mutação
8.
Eur J Haematol ; 110(6): 633-638, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36788756

RESUMO

Myeloid and erythroid precursor vacuolation is a common dysplastic finding associated with myeloid malignancies, toxins, drug, and nutritional deficiencies. It has been described as a core morphologic feature in VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. We sought to determine the number of cases attributable to VEXAS syndrome in bone marrow biopsies and aspirates (BAMB) reporting myeloid precursor vacuolation. We reviewed 1318 individual BAMB reports from January 2020 to July 2021 where "vacuole(s)," "vacuolation," or "vacuolated" was reported. Bone marrow biopsies with vacuolation confined to blasts or those completed as routine workup prior to stem cell transplant or post induction chemotherapy for AML (acute myeloid leukemia) were excluded. Myeloid and erythroid precursor vacuolation was noted in 219 reports representing 210 patients. The most common etiology was myelodysplastic syndrome (MDS) (38.6%), AML (16.7%), lymphoproliferative disorders and multiple myeloma (7.6%), drug or toxin exposure (5.2%) myeloproliferative neoplasm (MPN) or MPN/MDS overlap syndrome (4.3%). VEXAS syndrome was determined to be the etiology in 2.9% of patients. Two additional cases of VEXAS syndrome with bone marrow biopsies reported in the specified time frame did not explicitly report myeloid or erythroid precursor vacuolation but were identified based on clinical suspicion and repeat BAMB review. Myeloid and erythroid precursor vacuolation is a dysplastic feature attributable to VEXAS syndrome in at least 2.9% of cases. Standardized reporting of vacuolization, triaging of molecular sequencing and optimal treatment of this disorder are critical issues facing those seeing patients with suspected VEXAS syndrome.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Humanos , Medula Óssea/patologia , Síndromes Mielodisplásicas/patologia , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/etiologia , Transtornos Mieloproliferativos/patologia , Leucemia Mieloide Aguda/patologia , Biópsia
9.
JAMA ; 329(4): 318-324, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692560

RESUMO

Importance: VEXAS (vacuoles, E1-ubiquitin-activating enzyme, X-linked, autoinflammatory, somatic) syndrome is a disease with rheumatologic and hematologic features caused by somatic variants in UBA1. Pathogenic variants are associated with a broad spectrum of clinical manifestations. Knowledge of prevalence, penetrance, and clinical characteristics of this disease have been limited by ascertainment biases based on known phenotypes. Objective: To determine the prevalence of pathogenic variants in UBA1 and associated clinical manifestations in an unselected population using a genomic ascertainment approach. Design, Setting, and Participants: This retrospective observational study evaluated UBA1 variants in exome data from 163 096 participants within the Geisinger MyCode Community Health Initiative. Clinical phenotypes were determined from Geisinger electronic health record data from January 1, 1996, to January 1, 2022. Exposures: Exome sequencing was performed. Main Outcomes and Measures: Outcome measures included prevalence of somatic UBA1 variation; presence of rheumatologic, hematologic, pulmonary, dermatologic, and other findings in individuals with somatic UBA1 variation on review of the electronic health record; review of laboratory data; bone marrow biopsy pathology analysis; and in vitro enzymatic assays. Results: In 163 096 participants (mean age, 52.8 years; 94% White; 61% women), 11 individuals harbored likely somatic variants at known pathogenic UBA1 positions, with 11 of 11 (100%) having clinical manifestations consistent with VEXAS syndrome (9 male, 2 female). A total of 5 of 11 individuals (45%) did not meet criteria for rheumatologic and/or hematologic diagnoses previously associated with VEXAS syndrome; however, all individuals had anemia (hemoglobin: mean, 7.8 g/dL; median, 7.5 g/dL), which was mostly macrocytic (10/11 [91%]) with concomitant thrombocytopenia (10/11 [91%]). Among the 11 patients identified, there was a pathogenic variant in 1 male participant prior to onset of VEXAS-related signs or symptoms and 2 female participants had disease with heterozygous variants. A previously unreported UBA1 variant (c.1861A>T; p.Ser621Cys) was found in a symptomatic patient, with in vitro data supporting a catalytic defect and pathogenicity. Together, disease-causing UBA1 variants were found in 1 in 13 591 unrelated individuals (95% CI, 1:7775-1:23 758), 1 in 4269 men older than 50 years (95% CI, 1:2319-1:7859), and 1 in 26 238 women older than 50 years (95% CI, 1:7196-1:147 669). Conclusions and Relevance: This study provides an estimate of the prevalence and a description of the clinical manifestations of UBA1 variants associated with VEXAS syndrome within a single regional health system in the US. Additional studies are needed in unselected and genetically diverse populations to better define general population prevalence and phenotypic spectrum.


Assuntos
Síndromes Mielodisplásicas , Dermatopatias Genéticas , Enzimas Ativadoras de Ubiquitina , Feminino , Humanos , Masculino , Biópsia , Registros Eletrônicos de Saúde , Prevalência , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/epidemiologia , Síndromes Mielodisplásicas/genética , Enzimas Ativadoras de Ubiquitina/genética , Mutação , Estudos Retrospectivos , Exoma , Pessoa de Meia-Idade , Dermatopatias Genéticas/complicações , Dermatopatias Genéticas/diagnóstico , Dermatopatias Genéticas/epidemiologia , Dermatopatias Genéticas/genética , Estados Unidos/epidemiologia
11.
Nat Rev Rheumatol ; 18(8): 435-447, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35523963

RESUMO

Ubiquitylation is an essential post-translational modification that regulates intracellular signalling networks by triggering proteasomal substrate degradation, changing the activity of substrates or mediating changes in proteins that interact with substrates. Hundreds of enzymes participate in reversible ubiquitylation of proteins, some acting globally and others targeting specific proteins. Ubiquitylation is essential for innate immune responses, as it facilitates rapid regulation of inflammatory pathways, thereby ensuring sufficient but not excessive responses. A growing number of inborn errors of immunity are attributed to dysregulated ubiquitylation. These genetic disorders exhibit broad clinical manifestations, ranging from susceptibility to infection to autoinflammatory and/or autoimmune features, lymphoproliferation and propensity to malignancy. Many autoinflammatory disorders result from disruption of components of the ubiquitylation machinery and lead to overactivation of innate immune cells. An understanding of the disorders of ubiquitylation in autoinflammatory diseases could enable the development of novel management strategies.


Assuntos
Inflamação , Ubiquitina , Humanos , Imunidade Inata , Processamento de Proteína Pós-Traducional , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação
12.
Blood Adv ; 6(2): 405-409, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34649277

RESUMO

VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is caused by somatic mutations in UBA1 and is identified by a genotype-driven method. This condition affects unrelated men with adultonset inflammatory syndromes in association with hematologic manifestations of peripheral cytopenia and bone marrow myeloid dysplasia. Although bone marrow vacuolization restricted to myeloid and erythroid precursors has been identified in patients with VEXAS, the detailed clinical and histopathological features of peripheral blood and bone marrows remain unclear. The current case report describes the characteristic hematologic findings in patients with VEXAS, including macrocytic anemia, thrombocytopenia, marked hypercellular bone marrow with granulocytic hyperplasia, megaloblastic changes in erythroid precursors, and the absence of hematogones in addition to prominent vacuoles in myeloid and erythroid precursor cells. Characterizing the clinical and hematologic features helps to raise awareness and improve diagnosis of this novel, rare, but potentially underrecognized disease. Prompt diagnosis expands the general knowledgeable and understanding of this disease, and optimal management may prevent patients from developing complications related to this refractory inflammatory syndrome and improve the overall clinical outcome.


Assuntos
Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Neoplasias , Humanos , Masculino , Mutação , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Enzimas Ativadoras de Ubiquitina
13.
Arthritis Rheumatol ; 74(4): 665-670, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34611997

RESUMO

OBJECTIVE: To identify patients with VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic syndrome) from a single-center cohort of Italian patients with vasculitis, using a clinically oriented phenotype-first approach. METHODS: We retrospectively reviewed the clinical records of 147 consecutive male patients followed up in our vasculitis clinic from 2013 to date. All patients with a diagnosis of vasculitis and treatment-resistant manifestations of inflammation, persistently elevated inflammation markers, and hematologic abnormalities were identified. Bone marrow aspirates were examined for the presence of vacuoles. Sequencing of ubiquitin-activating enzyme E1 (UBA-1) was performed using genomic DNA from peripheral blood leukocytes or bone marrow tissue. RESULTS: Seven patients with vasculitis and concomitant features of VEXAS syndrome were identified. A final diagnosis of VEXAS syndrome was made in 3 of the 5 patients who underwent sequencing of UBA-1 (diagnosis was made postmortem for 1 patient). In all 3 patients, examination of the bone marrow aspirate revealed vacuoles characteristic of VEXAS syndrome, and all 3 patients met the definitive World Health Organization criteria for myelodysplastic syndrome. Cytogenetic analysis showed normal karyotypes in all 3 patients. CONCLUSION: To our knowledge, this is the first report of VEXAS syndrome associated with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Our data emphasize the need to consider VEXAS syndrome when evaluating patients with various forms of systemic vasculitis. The novel association between VEXAS syndrome and ANCA-associated vasculitis reported herein warrants further investigation.


Assuntos
Síndromes Mielodisplásicas , Vasculite , Anticorpos Anticitoplasma de Neutrófilos , Humanos , Inflamação/genética , Masculino , Mutação , Estudos Retrospectivos , Enzimas Ativadoras de Ubiquitina/genética , Vasculite/genética
14.
J Allergy Clin Immunol ; 149(1): 432-439.e4, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34048852

RESUMO

BACKGROUND: A novel autoinflammatory syndrome was recently described in male patients who harbored somatic mutations in the X-chromosomal UBA1 gene. These patients were characterized by adult-onset, treatment-refractory inflammation with fever, cytopenia, dysplastic bone marrow, vacuoles in myeloid and erythroid progenitor cells, cutaneous and pulmonary inflammation, chondritis, and vasculitis, which is abbreviated as VEXAS. OBJECTIVE: This study aimed to (retrospectively) diagnose VEXAS in patients who had previously been registered as having unclassified autoinflammation. We furthermore aimed to describe clinical experiences with this multifaceted, complex disease. METHODS: A systematic reanalysis of whole-exome sequencing data from a cohort of undiagnosed patients with autoinflammation from academic hospitals in The Netherlands was performed. When no sequencing data were available, targeted Sanger sequencing was applied in cases with high clinical suspicion of VEXAS. RESULTS: A total of 12 male patients who carried mutations in UBA1 were identified. These patients presented with adult-onset (mean age 67 years, range 47-79 years) autoinflammation with systemic symptoms, elevated inflammatory parameters, and multiorgan involvement, most typically involving the skin and bone marrow. Novel features of VEXAS included interstitial nephritis, cardiac involvement, stroke, and intestinal perforation related to treatment with tocilizumab. Although many types of treatment were initiated, most patients became treatment-refractory, with a high mortality rate of 50%. CONCLUSION: VEXAS should be considered in the differential diagnosis of males with adult-onset autoinflammation characterized by systemic symptoms and multiorgan involvement. Early diagnosis can prevent unnecessary diagnostic procedures and provide better prognostic information and more suitable treatment options, including stem cell transplantation.


Assuntos
Doenças Hereditárias Autoinflamatórias/genética , Síndromes Mielodisplásicas/genética , Dermatopatias Genéticas/genética , Enzimas Ativadoras de Ubiquitina/genética , Adulto , Idade de Início , Idoso , Doenças Hereditárias Autoinflamatórias/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/diagnóstico , Países Baixos , Estudos Retrospectivos , Dermatopatias Genéticas/diagnóstico
15.
Mayo Clin Proc ; 96(10): 2653-2659, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34489099

RESUMO

The objective of this study is to describe the clinical features and outcomes of patients with the newly defined vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome. Nine men with somatic mutations in the UBA1 gene were identified; the most frequent variant was p.Met41Thr (7 of 9, 78%). The median age at VEXAS diagnosis was 74 (67, 76.5) years, and patients had a median duration of symptoms for 4 years before diagnosis. Refractory constitutional symptoms (88%), ear and nose chondritis (55%), and inflammatory arthritis (55%) were common clinical features. Vasculitis was noted in 44%. All patients had significantly elevated inflammatory markers and macrocytic anemia. Thrombocytopenia was present in 66% at diagnosis of VEXAS. Eight patients had bone marrow biopsies performed. All bone marrows were hypercellular, and there was vacuolization of the erythroid (100%) or myeloid precursors (75%). Glucocorticoids attenuated symptoms at prednisone doses ≥20 mg per day, but no other immunosuppressive agent showed consistent long-term control of disease. One patient with coexisting plasma-cell myeloma received plasma-cell-directed therapy with improvement of the inflammatory response, which is a novel finding. In conclusion, VEXAS syndrome is a clinically heterogeneous, treatment-refractory inflammatory condition caused by somatic mutation of the UBA1 gene. Patients often present with overlapping rheumatologic manifestations and persistent hematologic abnormalities. As such, internists and subspecialists, including pathologists, should be aware of this condition to avert diagnostic delay, now that the etiology of this syndrome is known.


Assuntos
Inflamação/diagnóstico , Síndromes Mielodisplásicas/diagnóstico , Enzimas Ativadoras de Ubiquitina/genética , Idoso , Células Precursoras Eritroides/patologia , Doenças Genéticas Inatas , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Inflamação/genética , Masculino , Mutação , Síndromes Mielodisplásicas/genética , Células Mieloides/patologia , Vacúolos , Vasculite/genética
17.
Blood Adv ; 5(16): 3203-3215, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34427584

RESUMO

Somatic mutations in UBA1 involving hematopoietic stem and myeloid cells have been reported in patients with the newly defined VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Here, we report clinical hematologic manifestations and unique bone marrow (BM) features in 16 patients with VEXAS. All patients were male and had a history of severe autoinflammatory and rheumatologic manifestations and a somatic UBA1 mutation (p.Met41). Ten patients had hematologic disorders: myelodysplastic syndrome (MDS; 6 of 16), multiple myeloma (2 of 16), monoclonal gammopathy of undetermined significance (2 of 16), and monoclonal B-cell lymphocytosis (2 of 16), and a few of those patients had 2 co-existing clonal processes. Although macrocytic anemia (100%) and lymphopenia (80%) were prevalent in all patients with VEXAS, thrombocytopenia and neutropenia were more common in patients with progression to MDS. All BMs in VEXAS patients had prominent cytoplasmic vacuoles in myeloid and erythroid precursors. In addition, most BMs were hypercellular with myeloid hyperplasia, erythroid hypoplasia, and varying degrees of dysplasia. All patients diagnosed with MDS were lower risk (low blast count, very good to intermediate cytogenetics) according to standard prognostic scoring with no known progression to leukemia. In addition, 10 of 16 patients had thrombotic events, including venous thromboembolism and arterial stroke. Although VEXAS presents symptomatically as a rheumatologic disease, morbidity and mortality are associated with progression to hematologic disease. Given the increased risk of developing MDS and multiple myeloma, surveillance for disease progression is important.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Síndromes Mielodisplásicas , Medula Óssea , Humanos , Masculino , Mutação
18.
Arthritis Rheumatol ; 73(10): 1886-1895, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33779074

RESUMO

OBJECTIVE: Somatic mutations in UBA1 cause a newly defined syndrome known as VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic syndrome). More than 50% of patients currently identified as having VEXAS met diagnostic criteria for relapsing polychondritis (RP), but clinical features that characterize VEXAS within a cohort of patients with RP have not been defined. We undertook this study to define the prevalence of somatic mutations in UBA1 in patients with RP and to create an algorithm to identify patients with genetically confirmed VEXAS among those with RP. METHODS: Exome and targeted sequencing of UBA1 was performed in a prospective observational cohort of patients with RP. Clinical and immunologic characteristics of patients with RP were compared based on the presence or absence of UBA1 mutations. The random forest method was used to derive a clinical algorithm to identify patients with UBA1 mutations. RESULTS: Seven of 92 patients with RP (7.6%) had UBA1 mutations (referred to here as VEXAS-RP). Patients with VEXAS-RP were all male, were on average ≥45 years of age at disease onset, and commonly had fever, ear chondritis, skin involvement, deep vein thrombosis, and pulmonary infiltrates. No patient with VEXAS-RP had chondritis of the airways or costochondritis. Mortality was greater in VEXAS-RP than in RP (23% versus 4%; P = 0.029). Elevated acute-phase reactants and hematologic abnormalities (e.g., macrocytic anemia, thrombocytopenia, lymphopenia, multiple myeloma, myelodysplastic syndrome) were prevalent in VEXAS-RP. A decision tree algorithm based on male sex, a mean corpuscular volume >100 fl, and a platelet count <200 ×103 /µl differentiated VEXAS-RP from RP with 100% sensitivity and 96% specificity. CONCLUSION: Mutations in UBA1 were causal for disease in a subset of patients with RP. This subset of patients was defined by disease onset in the fifth decade of life or later, male sex, ear/nose chondritis, and hematologic abnormalities. Early identification is important in VEXAS given the associated high mortality rate.


Assuntos
Inflamação/genética , Policondrite Recidivante/genética , Enzimas Ativadoras de Ubiquitina/genética , Trombose Venosa/genética , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Síndrome
19.
N Engl J Med ; 383(27): 2628-2638, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33108101

RESUMO

BACKGROUND: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders. METHODS: We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function. RESULTS: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweet's syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation. CONCLUSIONS: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.).


Assuntos
Doenças Autoimunes/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Inflamação/genética , Mutação de Sentido Incorreto , Enzimas Ativadoras de Ubiquitina/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Citocinas/sangue , Exoma/genética , Genótipo , Arterite de Células Gigantes/genética , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Síndromes Mielodisplásicas/genética , Poliarterite Nodosa/genética , Policondrite Recidivante/genética , Análise de Sequência de DNA , Síndrome de Sweet/genética , Síndrome
20.
J Clin Immunol ; 40(6): 917-926, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32638197

RESUMO

PURPOSE: Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive disorder that manifests with fever, early-onset vasculitis, strokes, and hematologic dysfunction. This study aimed to identify disease-causing variants by conventional Sanger and whole exome sequencing in two families suspected to have DADA2 and non-confirmatory genotypes. ADA2 enzymatic assay confirmed the clinical diagnosis of DADA2. Molecular diagnosis was important to accurately identify other family members at risk. METHODS: We used a variety of sequencing technologies, ADA2 enzymatic testing, and molecular methods including qRT-PCR and MLPA. RESULTS: Exome sequencing identified heterozygosity for the known pathogenic variant ADA2: c.1358A>G, p.Tyr453Cys in a 14-year-old female with a history of ischemic strokes, livedo, and vasculitis. No second pathogenic variant could be identified. ADA2 enzymatic testing in combination with quantitative RT-PCR suggested a loss-of-function allele. Subsequent genome sequencing identified a canonical splice site variant, c.-47+2T>C, within the 5'UTR of ADA2. Two of her unaffected siblings were found to carry the same two pathogenic variants. A homozygous 800-bp duplication comprising exon 7 of ADA2 was identified in a 5-year-old female with features consistent with Diamond-Blackfan anemia (DBA). The duplication was missed by Sanger sequencing of ADA2, chromosomal microarray, and exome sequencing but was detected by MLPA in combination with long-read PCR sequencing. The exon 7 duplication was also identified in her non-symptomatic father and younger sister. CONCLUSIONS: ADA2 pathogenic variants may not be detected by conventional sequencing and genetic testing and may require the incorporation of additional diagnostic methods. A definitive molecular diagnosis is crucial for all family members to make informed treatment decisions.


Assuntos
Adenosina Desaminase/deficiência , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Padrões de Herança , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Penetrância , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Pré-Escolar , Ativação Enzimática , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Análise de Sequência de DNA , Sequenciamento do Exoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA