Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31293981

RESUMO

The M3 protein (M3) encoded by murine gammaherpesvirus 68 (MHV-68) is a unique viral immunomodulator with a high-affinity for a broad spectrum of chemokines, key mediators responsible for the migration of immune cells to sites of inflammation. M3 is currently being studied as a very attractive and desirable tool for blocking the chemokine signaling involved in some inflammatory diseases and cancers. In this study, we elucidated the role of M3 residues E70 and T272 in binding to chemokines by examining the effects of the E70A and T272G mutations on the ability of recombinant M3, prepared in Escherichia coli cells, to bind the human chemokines CCL5 and CXCL8. We found that the E70A mutation enhanced binding of M3 to CCL5 two-fold but had little effect on its binding to CXCL8. In contrast, the T272G mutation was found to be important for the thermal stability of M3 and significantly decreased M3's binding to both CCL5 (by about 4×) and CXCL8 (by about 5×). We also constructed in silico models of the wild-type M3-CCL5 and M3-CCL8 complexes and found substantial differences in their physical and chemical properties. M3 models with single mutation E70A and T272G suggested the role of E70 and T272 in binding M3 protein to chemokines. In sum, we have confirmed that site-directed mutagenesis could be an effective tool for modulating the blockade of particular chemokines by M3, as desired in therapeutic treatments for severe inflammatory illnesses arising from chemokine network dysregulation.


Assuntos
Quimiocinas/metabolismo , Mutação , Ligação Proteica , Rhadinovirus/genética , Proteínas Virais/genética , Proteínas Virais/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Quimiocina CCL5/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Fatores Imunológicos/genética , Fatores Imunológicos/imunologia , Interleucina-8 , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Virais/química
2.
Eur J Immunol ; 48(2): 258-272, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28975614

RESUMO

The repertoire of human αß T-cell receptors (TCRs) is generated via somatic recombination of germline gene segments. Despite this enormous variation, certain epitopes can be immunodominant, associated with high frequencies of antigen-specific T cells and/or exhibit bias toward a TCR gene segment. Here, we studied the TCR repertoire of the HLA-A*0201-restricted epitope LLWNGPMAV (hereafter, A2/LLW) from Yellow Fever virus, which generates an immunodominant CD8+ T cell response to the highly effective YF-17D vaccine. We discover that these A2/LLW-specific CD8+ T cells are highly biased for the TCR α chain TRAV12-2. This bias is already present in A2/LLW-specific naïve T cells before vaccination with YF-17D. Using CD8+ T cell clones, we show that TRAV12-2 does not confer a functional advantage on a per cell basis. Molecular modeling indicated that the germline-encoded complementarity determining region (CDR) 1α loop of TRAV12-2 critically contributes to A2/LLW binding, in contrast to the conventional dominant dependence on somatically rearranged CDR3 loops. This germline component of antigen recognition may explain the unusually high precursor frequency, prevalence and immunodominance of T-cell responses specific for the A2/LLW epitope.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Regiões Determinantes de Complementaridade/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Vacinas Virais/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/fisiologia , Imunidade Adaptativa/genética , Linhagem Celular , Seleção Clonal Mediada por Antígeno , Células Clonais , Citotoxicidade Imunológica , Epitopos de Linfócito T/metabolismo , Antígeno HLA-A2/metabolismo , Humanos , Epitopos Imunodominantes/metabolismo , Ativação Linfocitária , Especificidade do Receptor de Antígeno de Linfócitos T , Proteínas Virais/metabolismo , Febre Amarela/genética
3.
Bio Protoc ; 7(13)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28748203

RESUMO

T cell receptor (TCR) recognition of foreign peptide fragments, presented by peptide major histocompatibility complex (pMHC), governs T-cell mediated protection against pathogens and cancer. Many factors govern T-cell sensitivity, including the affinity of the TCR-pMHC interaction and the stability of pMHC on the surface of antigen presenting cells. These factors are particularly relevant for the peptide vaccination field, in which more stable pMHC interactions could enable more effective protection against disease. Here, we discuss a method for the determination of pMHC stability that we have used to investigate HIV immune escape, T-cell sensitivity to cancer antigens and mechanisms leading to autoimmunity.

4.
Artigo em Inglês | MEDLINE | ID: mdl-28630204

RESUMO

In chronic respiratory disease, the formation of dense, 3-dimensional "microcolonies" by Pseudomonas aeruginosa within the airway plays an important role in contributing to resistance to treatment. An in vitro biofilm model of pseudomonal microcolony formation using artificial-sputum (AS) medium was established to study the effects of low-molecular-weight alginate oligomers (OligoG CF-5/20) on pseudomonal growth, microcolony formation, and the efficacy of colistin. The studies employed clinical cystic fibrosis (CF) isolates (n = 3) and reference nonmucoid and mucoid multidrug-resistant (MDR) CF isolates (n = 7). Bacterial growth and biofilm development and disruption were studied using cell viability assays and image analysis with scanning electron and confocal laser scanning microscopy. Pseudomonal growth in AS medium was associated with increased ATP production (P < 0.05) and the formation (at 48 h) of discrete (>10-µm) microcolonies. In conventional growth medium, colistin retained an ability to inhibit growth of planktonic bacteria, although the MIC was increased (0.1 to 0.4 µg/ml) in AS medium compared to Mueller-Hinton (MH) medium. In contrast, in an established-biofilm model in AS medium, the efficacy of colistin was decreased. OligoG CF-5/20 (≥2%) treatment, however, induced dose-dependent biofilm disruption (P < 0.05) and led to colistin retaining its antimicrobial activity (P < 0.05). While circular dichroism indicated that OligoG CF-5/20 did not change the orientation of the alginate carboxyl groups, mass spectrometry demonstrated that the oligomers induced dose-dependent (>0.2%; P < 0.05) reductions in pseudomonal quorum-sensing signaling. These findings reinforce the potential clinical significance of microcolony formation in the CF lung and highlight a novel approach to treat MDR pseudomonal infections.


Assuntos
Alginatos/farmacologia , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Colistina/farmacologia , Oligossacarídeos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Percepção de Quorum/efeitos dos fármacos , Infecções Respiratórias/microbiologia , Escarro/microbiologia
5.
Biochem J ; 474(6): 1003-1016, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270562

RESUMO

Sperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological stimulus that evokes intracellular calcium (Ca2+) oscillations that are essential for the initiation of egg activation during mammalian fertilisation. A recent genetic study reported a male infertility case that was directly associated with a point mutation in the PLCζ C2 domain, where an isoleucine residue had been substituted with a phenylalanine (I489F). Here, we have analysed the effect of this mutation on the in vivo Ca2+ oscillation-inducing activity and the in vitro biochemical properties of human PLCζ. Microinjection of cRNA or recombinant protein corresponding to PLCζI489F mutant at physiological concentrations completely failed to cause Ca2+ oscillations and trigger development. However, this infertile phenotype could be effectively rescued by microinjection of relatively high (non-physiological) amounts of recombinant mutant PLCζI489F protein, leading to Ca2+ oscillations and egg activation. Our in vitro biochemical analysis suggested that the PLCζI489F mutant displayed similar enzymatic properties, but dramatically reduced binding to PI(3)P and PI(5)P-containing liposomes compared with wild-type PLCζ. Our findings highlight the importance of PLCζ at fertilisation and the vital role of the C2 domain in PLCζ function, possibly due to its novel binding characteristics.


Assuntos
Domínios C2 , Cálcio/metabolismo , Infertilidade Masculina/genética , Fosfoinositídeo Fosfolipase C/química , Mutação Puntual , Substituição de Aminoácidos , Animais , Sinalização do Cálcio , Bovinos , Feminino , Fertilização , Expressão Gênica , Humanos , Isoleucina/química , Isoleucina/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Masculino , Camundongos , Microinjeções , Oócitos/citologia , Oócitos/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Ligação Proteica , RNA Complementar/administração & dosagem , RNA Complementar/genética , RNA Complementar/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patologia
6.
J Biol Chem ; 292(3): 802-813, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27903649

RESUMO

T-cell cross-reactivity is essential for effective immune surveillance but has also been implicated as a pathway to autoimmunity. Previous studies have demonstrated that T-cell receptors (TCRs) that focus on a minimal motif within the peptide are able to facilitate a high level of T-cell cross-reactivity. However, the structural database shows that most TCRs exhibit less focused antigen binding involving contact with more peptide residues. To further explore the structural features that allow the clonally expressed TCR to functionally engage with multiple peptide-major histocompatibility complexes (pMHCs), we examined the ILA1 CD8+ T-cell clone that responds to a peptide sequence derived from human telomerase reverse transcriptase. The ILA1 TCR contacted its pMHC with a broad peptide binding footprint encompassing spatially distant peptide residues. Despite the lack of focused TCR-peptide binding, the ILA1 T-cell clone was still cross-reactive. Overall, the TCR-peptide contacts apparent in the structure correlated well with the level of degeneracy at different peptide positions. Thus, the ILA1 TCR was less tolerant of changes at peptide residues that were at, or adjacent to, key contact sites. This study provides new insights into the molecular mechanisms that control T-cell cross-reactivity with important implications for pathogen surveillance, autoimmunity, and transplant rejection.


Assuntos
Linfócitos T CD8-Positivos , Peptídeos , Receptores de Antígenos de Linfócitos T , Telomerase , Linfócitos T CD8-Positivos/química , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Reações Cruzadas , Humanos , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Telomerase/química , Telomerase/imunologia
7.
Antimicrob Agents Chemother ; 60(4): 1984-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26824944

RESUMO

We have previously examined the mechanism of antimicrobial peptides on the outer membrane of vaccinia virus. We show here that the formulation of peptides LL37 and magainin-2B amide in polysorbate 20 (Tween 20) results in greater reductions in virus titer than formulation without detergent, and the effect is replicated by substitution of polysorbate 20 with high-ionic-strength buffer. In contrast, formulation with polysorbate 20 or high-ionic-strength buffer has the opposite effect on bactericidal activity of both peptides, resulting in lesser reductions in titer for both Gram-positive and Gram-negative bacteria. Circular dichroism spectroscopy shows that the differential action of polysorbate 20 and salt on the virucidal and bactericidal activities correlates with the α-helical content of peptide secondary structure in solution, suggesting that the virucidal and bactericidal activities are mediated through distinct mechanisms. The correlation of a defined structural feature with differential activity against a host-derived viral membrane and the membranes of both Gram-positive and Gram-negative bacteria suggests that the overall helical content in solution under physiological conditions is an important feature for consideration in the design and development of candidate peptide-based antimicrobial compounds.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/farmacologia , Catelicidinas/farmacologia , Escherichia coli/efeitos dos fármacos , Polissorbatos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Vaccinia virus/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Antivirais/química , Catelicidinas/química , Linhagem Celular , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Escherichia coli/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Concentração Osmolar , Polissorbatos/química , Conformação Proteica em alfa-Hélice/efeitos dos fármacos , Coelhos , Especificidade da Espécie , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade , Vaccinia virus/crescimento & desenvolvimento , Vírion/efeitos dos fármacos , Vírion/crescimento & desenvolvimento
8.
J Med Chem ; 59(2): 647-54, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26730548

RESUMO

Dextrin-colistin conjugates have been developed with the aim of achieving reduced clinical toxicity associated with colistin, also known as polymyxin E, and improved targeting to sites of bacterial infection. This study investigated the in vitro ability of such dextrin-colistin conjugates to bind and modulate bacterial lipopolysaccharide (LPS), and how this binding affects its biological activity. These results showed that colistin and amylase-activated dextrin-colistin conjugate to a lesser extent induced aggregation of LPS to form a stacked bilayer structure with characteristic dimensions, although this did not cause any substantial change in its secondary structure. In biological studies, both colistin and dextrin-colistin conjugate effectively inhibited LPS-induced hemolysis and tumor necrosis factor α (TNFα) secretion in a concentration-dependent manner, but only dextrin-colistin conjugate showed no additive toxicity at higher concentrations. This study provides the first direct structural experimental evidence for the binding of dextrin-colistin conjugates and LPS and gives insight into the mode of action of dextrin-colistin conjugates.


Assuntos
Antibacterianos/química , Bactérias/química , Colistina/química , Colistina/farmacologia , Dextrinas/química , Dextrinas/farmacologia , Lipopolissacarídeos/química , Amilases/metabolismo , Animais , Antibacterianos/farmacologia , Linhagem Celular , Endotoxinas/antagonistas & inibidores , Endotoxinas/química , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Técnicas In Vitro , Teste do Limulus , Lipopolissacarídeos/antagonistas & inibidores , Ratos , Fator de Necrose Tumoral alfa/biossíntese
9.
Biochim Biophys Acta ; 1830(10): 4426-32, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23747301

RESUMO

BACKGROUND: This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6). METHODS: Wild-type (WT) RyR2 central domain constructs (G(2236)to G(2491)) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation. RESULTS: The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~200-400µM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found. CONCLUSIONS: The RyR2 central domain, expressed as a 'correctly' folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP. GENERAL SIGNIFICANCE: Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding.


Assuntos
Trifosfato de Adenosina/metabolismo , Mutação , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Dicroísmo Circular , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Espectrofotometria Ultravioleta , Proteínas de Ligação a Tacrolimo/metabolismo
10.
Amino Acids ; 44(1): 161-77, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21984379

RESUMO

Transglutaminases (TG) form a family of enzymes that catalyse various post-translational modifications of glutamine residues in proteins and peptides including intra- and intermolecular isopeptide bond formation, esterification and deamidation. We have characterized a novel member of the mammalian TG family, TG6, which is expressed in a human carcinoma cell line with neuronal characteristics and in mouse brain. Besides full-length protein, alternative splicing results in a short variant lacking the second ß-barrel domain in man and a variant with truncated ß-sandwich domain in mouse. Biochemical data show that TG6 is allosterically regulated by Ca(2+) and guanine nucleotides. Molecular modelling indicates that TG6 could have Ca(2+) and GDP-binding sites related to those of TG3 and TG2, respectively. Localization of mRNA and protein in the mouse identified abundant expression of TG6 in the central nervous system. Analysis of its temporal and spatial pattern of induction in mouse development indicates an association with neurogenesis. Neuronal expression of TG6 was confirmed by double-labelling of mouse forebrain cells with cell type-specific markers. Induction of differentiation in mouse Neuro 2a cells with NGF or dibutyryl cAMP is associated with an upregulation of TG6 expression. Familial ataxia has recently been linked to mutations in the TGM6 gene. Autoantibodies to TG6 were identified in immune-mediated ataxia in patients with gluten sensitivity. These findings suggest a critical role for TG6 in cortical and cerebellar neurons.


Assuntos
Sistema Nervoso Central/embriologia , Sistema Nervoso Central/fisiologia , Neurônios/fisiologia , Transglutaminases/genética , Animais , Domínio Catalítico , Diferenciação Celular , Linhagem Celular , Sistema Nervoso Central/citologia , Coenzimas , Evolução Molecular , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/enzimologia , Nucleotídeos/química , Especificidade de Órgãos , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato , Transglutaminases/antagonistas & inibidores , Transglutaminases/metabolismo
11.
Antimicrob Agents Chemother ; 56(6): 3298-308, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22430978

RESUMO

Antimicrobial peptides (AMPs) have therapeutic potential, particularly for localized infections such as those of the lung. Here we show that airway administration of a pegylated AMP minimizes lung tissue toxicity while nevertheless maintaining antimicrobial activity. CaLL, a potent synthetic AMP (KWKLFKKIFKRIVQRIKDFLR) comprising fragments of LL-37 and cecropin A peptides, was N-terminally pegylated (PEG-CaLL). PEG-CaLL derivatives retained significant antimicrobial activity (50% inhibitory concentrations [IC(50)s] 2- to 3-fold higher than those of CaLL) against bacterial lung pathogens even in the presence of lung lining fluid. Circular dichroism and fluorescence spectroscopy confirmed that conformational changes associated with the binding of CaLL to model microbial membranes were not disrupted by pegylation. Pegylation of CaLL reduced AMP-elicited cell toxicity as measured using in vitro lung epithelial primary cell cultures. Further, in a fully intact ex vivo isolated perfused rat lung (IPRL) model, airway-administered PEG-CaLL did not result in disruption of the pulmonary epithelial barrier, whereas CaLL caused an immediate loss of membrane integrity leading to pulmonary edema. All AMPs (CaLL, PEG-CaLL, LL-37, cecropin A) delivered to the lung by airway administration showed limited (<3%) pulmonary absorption in the IPRL with extensive AMP accumulation in lung tissue itself, a characteristic anticipated to be beneficial for the treatment of pulmonary infections. We conclude that pegylation may present a means of improving the lung biocompatibility of AMPs designed for the treatment of pulmonary infections.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Animais , Anti-Infecciosos/síntese química , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Ensaio de Imunoadsorção Enzimática , Masculino , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Ratos , Ratos Sprague-Dawley , Espectrometria de Fluorescência
12.
Biomacromolecules ; 12(1): 19-27, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21141810

RESUMO

Polymer therapeutics, including polymeric drugs and polymer-protein conjugates, are clinically established as first-generation nanomedicines. Knowing that the coiled-coil peptide motif is fundamentally important in the regulation of many cellular and pathological processes, the aim of these studies was to examine the feasibility of designing polymer conjugates containing the coiled-coil motif as a putative therapeutic "molecular switch". To establish proof of concept, we prepared a mPEG-FosW(C) conjugate by reacting mPEG-maleimide (M(w) 5522 g mol(-1), M(w)/M(n) 1.1) with a FosW peptide synthesized to contain a terminal cysteine residue (FosW(C)). Its ability to form a stable coil-coil heterodimer with the target c-Jun sequence of the oncogenic AP-1 transcription factor was investigated using 2D (15)N-HSQC NMR together with a recombinantly prepared (15)N-labeled c-Jun peptide ([(15)N]r-c-Jun). Observation that heterodimerization was achieved and that the polymer did not sterically disadvantage hybridization suggests an important future for this new family of polymer therapeutics.


Assuntos
Nanomedicina/métodos , Polietilenoglicóis , Proteínas Proto-Oncogênicas c-fos , Proteínas Proto-Oncogênicas c-jun , Linhagem Celular Tumoral , Humanos , Ressonância Magnética Nuclear Biomolecular , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-fos/farmacologia , Proteínas Proto-Oncogênicas c-jun/química , Proteínas Proto-Oncogênicas c-jun/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
13.
Protein Expr Purif ; 71(1): 33-41, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20045464

RESUMO

We report the domain analysis of the N-terminal region (residues 1-759) of the human cardiac ryanodine receptor (RyR2) that encompasses one of the discrete RyR2 mutation clusters associated with catecholaminergic polymorphic ventricular tachycardia (CPVT1) and arrhythmogenic right ventricular dysplasia (ARVD2). Our strategy utilizes a bioinformatics approach complemented by protein expression, solubility analysis and limited proteolytic digestion. Based on the bioinformatics analysis, we designed a series of specific RyR2 N-terminal fragments for cloning and overexpression in Escherichia coli. High yields of soluble proteins were achieved for fragments RyR2(1-606)xHis(6), RyR2(391-606)xHis(6), RyR2(409-606)xHis(6), Trx.RyR2(384-606)xHis(6), TrxxRyR2(391-606)xHis(6) and Trx.RyR2(409-606)xHis(6). The folding of RyR2(1-606)xHis(6) was analyzed by circular dichroism spectroscopy resulting in alpha-helix and beta-sheet content of approximately 23% and approximately 29%, respectively, at temperatures up to 35 degrees C, which is in agreement with sequence based secondary structure predictions. Tryptic digestion of the largest recombinant protein, RyR2(1-606)xHis(6), resulted in the appearance of two specific subfragments of approximately 40 and 25 kDa. The 25 kDa fragment exhibited greater stability. Hybridization with anti-His(6).Tag antibody indicated that RyR2(1-606)xHis(6) is cleaved from the N-terminus and amino acid sequencing of the proteolytic fragments revealed that digestion occurred after residues 259 and 384, respectively.


Assuntos
Biologia Computacional/métodos , Proteínas Recombinantes/biossíntese , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Sequência de Aminoácidos , Dicroísmo Circular , Histidina/metabolismo , Humanos , Dados de Sequência Molecular , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Solubilidade
14.
J Biol Chem ; 278(36): 34483-90, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12826666

RESUMO

The LG4 module of the laminin alpha 3 chain (alpha 3 LG4), a component of epithelial-specific laminin-5, has cell attachment activity and binds syndecan (Utani, A., Nomizu, M., Matsuura, H., Kato, K., Kobayashi, T., Takeda, U., Aota, S., Nielsen, P. K., and Shinkai, H. (2001) J. Biol. Chem. 276, 28779-28788). Here, we show that recombinant alpha 3 LG4 and a 19-mer synthetic peptide (A3G756) within alpha 3 LG4 active for syndecan binding increased the expression of matrix metalloproteinase-1 (MMP-1) in keratinocytes and fibroblasts. This induction was inhibited by heparin and required de novo synthesis of proteins. In keratinocytes, A3G756 up-regulated interleukin (IL)-1 beta and MMP-1 expression and an IL-1 receptor antagonist thoroughly inhibited A3G756-mediated induction of MMP-1. A3G756 also activated p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-related kinase (Erk). Studies with specific inhibitors of MAPKs showed that p38 MAPK activation was necessary for both IL-1 beta and MMP-1 induction, but Erk activation was required only for MMP-1 induction. In fibroblasts, IL-1 receptor antagonist did not block A3G756-mediated induction of MMP-1. These results indicated that induction of MMP-1 by alpha 3 LG4 is mediated through the IL-1 beta autocrine loop in keratinocytes but the mechanism of the induction in fibroblasts is different. Our study suggests that the laminin alpha 3 LG4 module may play an important role in tissue remodeling by inducing MMP-1 expression during wound healing.


Assuntos
Laminina/química , Sistema de Sinalização das MAP Quinases , Metaloproteinase 1 da Matriz/química , Metaloproteinase 1 da Matriz/metabolismo , Animais , Western Blotting , Adesão Celular , Linhagem Celular , Células Cultivadas , Colágeno/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Interleucina-1/metabolismo , Queratinócitos/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Peptídeos/química , Proteoglicanas/química , Proteoglicanas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Sindecana-2 , Sindecana-4 , Sindecanas , Fatores de Tempo , Regulação para Cima , Cicatrização , Proteínas Quinases p38 Ativadas por Mitógeno
15.
J Biol Chem ; 278(33): 31149-58, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12759347

RESUMO

Nuclear and mitochondrial (mt) forms of chicken mt transcription factor A (c-TFAM) generated by alternative splicing of a gene (c-tfam) were cloned. c-tfam mapped at 6q1.1-q1.2 has similar exon/intron organization as mouse tfam except that the first exons encoding the nuclear and the mt form-specific sequences were positioned oppositely. When cDNA encoding the nuclear form was transiently expressed in chicken lymphoma DT40 cells after tagging at the C terminus with c-Myc, the product was localized into nucleus, whereas the only endogenous mt form of DT40 cells was immunostained exclusively within mitochondria. c-TFAM is most similar to Xenopus (xl-) TFAM in having extended C-terminal regions in addition to two high mobility group (HMG) boxes, a linker region between them, and a C-terminal tail, also found in human and mouse TFAM. Similarities between c- and xl-TFAM are higher in linker and C-terminal regions than in HMG boxes. Disruption of both tfam alleles in DT40 cells prevented proliferation. The tfam+/tfam- cells showed a 50 and 40-60% reduction of mtDNA and its transcripts, respectively. Expression of exogenous wild type c-tfam cDNA in the tfam+/tfam- cells increased mtDNA up to 4-fold in a dose-dependent manner, whereas its transcripts increased only marginally. A deletion mutant lacking the first HMG box lost this activity, whereas only marginal reduction of the activity was observed in a deletion mutant at the second HMG box. Despite the essential role of the C-terminal tail in mtDNA transcription demonstrated in vitro, deletion of c-TFAM at this region reduced the activity of maintenance of the mtDNA level only by 50%. A series of deletion mutant at the tail region suggested stimulatory and suppressive sequences in this region for the maintenance of mtDNA level.


Assuntos
DNA Mitocondrial/genética , Proteínas de Ligação a DNA , Dosagem de Genes , Proteínas de Grupo de Alta Mobilidade , Proteínas Mitocondriais , Proteínas Nucleares , Transativadores , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas de Xenopus , Sequência de Aminoácidos , Animais , Galinhas , Clonagem Molecular , DNA Complementar , Expressão Gênica , Humanos , Linfoma , Camundongos , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Células Tumorais Cultivadas , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA