Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 12(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36358353

RESUMO

Glioblastomas are incurable primary brain tumors harboring a heterogeneous landscape of genetic and metabolic alterations. Longitudinal imaging by MRI and [18F]FET-PET measurements enable us to visualize the features of evolving tumors in a dynamic manner. Yet, close-meshed longitudinal imaging time points for characterizing temporal and spatial metabolic alterations during tumor evolution in patients is not feasible because patients usually present with already established tumors. The replication-competent avian sarcoma-leukosis virus (RCAS)/tumor virus receptor-A (tva) system is a powerful preclinical glioma model offering a high grade of spatial and temporal control of somatic gene delivery in vivo. Consequently, here, we aimed at using MRI and [18F]FET-PET to identify typical neuroimaging characteristics of the platelet-derived growth factor B (PDGFB)-driven glioma model using the RCAS-tva system. Our study showed that this preclinical glioma model displays MRI and [18F]FET-PET features that highly resemble the corresponding established human disease, emphasizing the high translational relevance of this experimental model. Furthermore, our investigations unravel exponential growth dynamics and a model-specific tumor microenvironment, as assessed by histology and immunochemistry. Taken together, our study provides further insights into this preclinical model and advocates for the imaging-stratified design of preclinical therapeutic interventions.

2.
Cancers (Basel) ; 13(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063518

RESUMO

Glioblastoma is an aggressive primary tumor of the central nervous system. Targeting the immunosuppressive glioblastoma-associated microenvironment is an interesting therapeutic approach. Tumor-associated macrophages represent an abundant population of tumor-infiltrating host cells with tumor-promoting features. The colony stimulating factor-1/ colony stimulating factor-1 receptor (CSF-1/CSF1R) axis plays an important role for macrophage differentiation and survival. We thus aimed at investigating the antiglioma activity of CSF1R inhibition alone or in combination with blockade of programmed death (PD) 1. We investigated combination treatments of anti-CSF1R alone or in combination with anti-PD1 antibodies in an orthotopic syngeneic glioma mouse model, evaluated post-treatment effects and assessed treatment-induced cytotoxicity in a coculture model of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) ex vivo. Anti-CSF1R monotherapy increased the latency until the onset of neurological symptoms. Combinations of anti-CSF1R and anti-PD1 antibodies led to longterm survivors in vivo. Furthermore, we observed treatment-induced cytotoxicity of combined anti-CSF1R and anti-PD1 treatment in the PDM/TILs cocultures ex vivo. Our results identify CSF1R as a promising therapeutic target for glioblastoma, potentially in combination with PD1 inhibition.

3.
Sci Rep ; 8(1): 5970, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654250

RESUMO

Mutations in the Norrin (NDP) gene cause severe developmental blood vessel defects in the retina leading to congenital blindness. In the retina of Ndph-knockout mice only the superficial capillary network develops. Here, a detailed characterization of this mouse model at late stages of the disease using in vivo retinal imaging revealed cystoid structures that closely resemble the ovoid cysts in the inner nuclear layer of the human retina with cystoid macular edema (CME). In human CME an involvement of Müller glia cells is hypothesized. In Ndph-knockout retinae we could demonstrate that activated Müller cells were located around and within these cystoid spaces. In addition, we observed extensive activation of retinal microglia and development of neovascularization. Furthermore, ex vivo analyses detected extravasation of monocytic cells suggesting a breakdown of the blood retina barrier. Thus, we could demonstrate that also in the developmental retinal vascular pathology present in the Ndph-knockout mouse inflammatory processes are active and may contribute to further retinal degeneration. This observation delivers a new perspective for curative treatments of retinal vasculopathies. Modulation of inflammatory responses might reduce the symptoms and improve visual acuity in these diseases.


Assuntos
Proteínas do Olho/metabolismo , Inflamação/patologia , Edema Macular/patologia , Neovascularização Patológica/patologia , Proteínas do Tecido Nervoso/metabolismo , Retina/patologia , Animais , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Edema Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Acuidade Visual/fisiologia
4.
Hum Gene Ther ; 28(12): 1180-1188, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29212391

RESUMO

Retinitis pigmentosa type 43 (RP43) is a blinding disease caused by mutations in the gene for rod phosphodiesterase 6 alpha (PDE6A). The disease process begins with a dysfunction of rod photoreceptors, subsequently followed by a currently untreatable progressive degeneration of the entire outer retina. Aiming at a curative approach via PDE6A gene supplementation, a novel adeno-associated viral (AAV) vector was developed for expression of the human PDE6A cDNA under control of the human rhodopsin promotor (rAAV8.PDE6A). This study assessed the therapeutic efficacy of rAAV8.PDE6A in the Pde6anmf363/nmf363-mutant mouse model of RP43. All mice included in this study were treated with sub-retinal injections of the vector at 2 weeks after birth. The therapeutic effect was monitored at 1 month and 6 months post injection. Biological function of the transgene was assessed in vivo by means of electroretinography. The degree of morphological rescue was investigated both in vivo using optical coherence tomography and ex vivo by immunohistological staining. It was found that the novel rAAV8.PDE6A vector resulted in a stable and efficient expression of PDE6A protein in rod photoreceptors of Pde6anmf363/nmf363 mice following treatment at both the short- and long-term time points. The treatment led to a substantial morphological preservation of outer nuclear layer thickness, rod outer segment structure, and prolonged survival of cone photoreceptors for at least 6 months. Additionally, the ERG analysis confirmed a restoration of retinal function in a group of treated mice. Taken together, this study provides successful proof-of-concept for the cross-species efficacy of the rAAV8.PDE6A vector developed for use in human patients. Importantly, the data show stable expression and rescue effects for a prolonged period of time, raising hope for future translational studies based on this approach.

5.
Front Neurosci ; 11: 292, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28596720

RESUMO

Achromatopsia type 2 (ACHM2) is a severe, inherited eye disease caused by mutations in the CNGA3 gene encoding the α subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel. Patients suffer from strongly impaired daylight vision, photophobia, nystagmus, and lack of color discrimination. We have previously shown in the Cnga3 knockout (KO) mouse model of ACHM2 that gene supplementation therapy is effective in rescuing cone function and morphology and delaying cone degeneration. In our preclinical approach, we use recombinant adeno-associated virus (AAV) vector-mediated gene transfer to express the murine Cnga3 gene under control of the mouse blue opsin promoter. Here, we provide novel data on the efficiency and permanence of such gene supplementation therapy in Cnga3 KO mice. Specifically, we compare the influence of two different AAV vector capsids, AAV2/5 (Y719F) and AAV2/8 (Y733F), on restoration of cone function, and assess the effect of age at time of treatment on the long-term outcome. The evaluation included in vivo analysis of retinal function using electroretinography (ERG) and immunohistochemical analysis of vector-driven Cnga3 transgene expression. We found that both vector capsid serotypes led to a comparable rescue of cone function over the observation period between 4 weeks and 3 months post treatment. In addition, a clear therapeutic effect was present in mice treated at 2 weeks of age as well as in mice treated at 3 months of age at the first assessment at 4 weeks after treatment. Importantly, the effect extended in both cases over the entire observation period of 12 months post treatment. However, the average ERG amplitude levels differed between the two groups, suggesting a role of the absolute age, or possibly, the associated state of the degeneration, on the achievable outcome. In summary, we found that the therapeutic time window of opportunity for AAV-mediated Cnga3 gene supplementation therapy in the Cnga3 KO mouse model extends at least to an age of 3 months, but is presumably limited by the condition, number and topographical distribution of remaining cones at the time of treatment. No impact of the choice of capsid on the therapeutic success was detected.

6.
Curr Alzheimer Res ; 12(4): 323-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25817253

RESUMO

Apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for Alzheimer's disease (AD), is associated with neuronal and vascular impairments. Recent findings suggest that retina of apoE4 mice have synaptic and functional impairments. We presently investigated the effects of apoE4 on retinal and choroidal vasculature and the possible role of VEGF in these effects. There were no histological differences between the retinal and choroidal vasculatures of naïve apoE3 and apoE4 mice. In contrast, laserdriven choroidal injury induced higher levels of choroidal neovascularization (CNV) in apoE4 than in apoE3 mice. These effects were associated with an inflammatory response and with activation of the Muller cells and asrocytic markers gluthatione synthetase and GFAP, all of which were more pronounced in the apoE4 mice. CNV also induced a transient increase in the levels of the synaptic markers synaptophysin and PSD95 which were however similar in the apoE4 and apoE3 naive mice. Retinal and choroidal VEGF and apoE levels were lower in naïve apoE4 than in corresponding apoE3 mice. In contrast, VEGF and apoE levels rose more pronouncedly following laser injury in the apoE4 than in apoE3 mice. Taken together, these findings suggest that the apoE4-induced retinal impairments, under basal conditions, may be related to reduced VEGF levels in the eyes of these mice. The hyper-neovascularization in the apoE4 mice might be driven by increased inflammation and the associated surge in VEGF following injury. Retinal and choroidal VEGF and apoE levels were lower in naïve apoE4 than in corresponding apoE3 mice. In contrast, VEGF and apoE levels rose more pronouncedly following laser injury in the apoE4 than in apoE3 mice. Taken together, these findings suggest that the apoE4-induced retinal impairments, under basal conditions, may be related to reduced VEGF levels in the eyes of these mice. The hyper-neovascularization in the apoE4 mice might be driven by increased inflammation and the associated surge in VEGF following injury.


Assuntos
Apolipoproteína E4/metabolismo , Corioide/patologia , Retina/patologia , Sinapses/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Doença de Alzheimer , Animais , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Astrócitos/patologia , Astrócitos/fisiologia , Corioide/irrigação sanguínea , Corioide/fisiopatologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Células Ependimogliais/patologia , Células Ependimogliais/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Retina/fisiopatologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Vasos Retinianos/fisiopatologia , Sinapses/fisiologia
7.
PLoS One ; 9(9): e107048, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25203538

RESUMO

Serum Response Factor (SRF) fulfills essential roles in post-natal retinal angiogenesis and adult neovascularization. These functions have been attributed to the recruitment by SRF of the cofactors Myocardin-Related Transcription Factors MRTF-A and -B, but not the Ternary Complex Factors (TCFs) Elk1 and Elk4. The role of the third TCF, Elk3, remained unknown. We generated a new Elk3 knockout mouse line and showed that Elk3 had specific, non-redundant functions in the retinal vasculature. In Elk3(-/-) mice, post-natal retinal angiogenesis was transiently delayed until P8, after which it proceeded normally. Interestingly, tortuous arteries developed in Elk3(-/-) mice from the age of four weeks, and persisted into late adulthood. Tortuous vessels have been observed in human pathologies, e.g. in ROP and FEVR. These human disorders were linked to altered activities of vascular endothelial growth factor (VEGF) in the affected eyes. However, in Elk3(-/-) mice, we did not observe any changes in VEGF or several other potential confounding factors, including mural cell coverage and blood pressure. Instead, concurrent with the post-natal transient delay of radial outgrowth and the formation of adult tortuous arteries, Elk3-dependent effects on the expression of Angiopoietin/Tie-signalling components were observed. Moreover, in vitro microvessel sprouting and microtube formation from P10 and adult aortic ring explants were reduced. Collectively, these results indicate that Elk3 has distinct roles in maintaining retinal artery integrity. The Elk3 knockout mouse is presented as a new animal model to study retinal artery tortuousity in mice and human patients.


Assuntos
Artérias/anormalidades , Instabilidade Articular/patologia , Neovascularização Patológica/patologia , Proteínas Proto-Oncogênicas c-ets/deficiência , Proteínas Proto-Oncogênicas c-ets/genética , Retina/patologia , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Dermatopatias Genéticas/patologia , Malformações Vasculares/patologia , Angiopoietinas/genética , Angiopoietinas/metabolismo , Animais , Artérias/metabolismo , Artérias/patologia , Modelos Animais de Doenças , Feminino , Instabilidade Articular/genética , Instabilidade Articular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Receptores de TIE/genética , Receptores de TIE/metabolismo , Retina/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais/fisiologia , Dermatopatias Genéticas/genética , Dermatopatias Genéticas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Crescimento do Endotélio Vascular/genética , Fatores de Crescimento do Endotélio Vascular/metabolismo , Malformações Vasculares/genética , Malformações Vasculares/metabolismo
8.
Adv Exp Med Biol ; 801: 733-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664765

RESUMO

Retinitis pigmentosa (RP) is a severe retinal disease characterized by a progressive degeneration of rod photoreceptors and a secondary loss of cone function. Here, we used CNGB1-deficient (CNGB1(-/-)) mice, a mouse model for autosomal recessive RP, to evaluate the efficacy of adeno-associated virus (AAV) vector-mediated gene therapy for the treatment of RP. The treatment restored normal expression of rod CNG channels and rod-driven light responses in the CNGB1(-/-) retina. This led to a substantial delay of retinal degeneration and long-term preservation of retinal morphology. Finally, treated CNGB1(-/-) mice performed significantly better than untreated mice in a rod-dependent vision-guided behavior test. In summary, this study holds promise for the treatment of rod channelopathy-associated retinitis pigmentosa by AAV-mediated gene replacement.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Dependovirus/genética , Proteínas do Tecido Nervoso/genética , Recuperação de Função Fisiológica/genética , Degeneração Retiniana/terapia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Retinose Pigmentar/terapia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Visão Ocular/fisiologia
9.
Hum Mol Genet ; 23(13): 3384-401, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24493795

RESUMO

In humans, the Crumbs homolog-1 (CRB1) gene is mutated in autosomal recessive Leber congenital amaurosis and early-onset retinitis pigmentosa. In mammals, the Crumbs family is composed of: CRB1, CRB2, CRB3A and CRB3B. Recently, we showed that removal of mouse Crb2 from retinal progenitor cells, and consequent removal from Müller glial and photoreceptor cells, results in severe and progressive retinal degeneration with concomitant loss of retinal function that mimics retinitis pigmentosa due to mutations in the CRB1 gene. Here, we studied the effects of cell-type-specific loss of CRB2 from the developing mouse retina using targeted conditional deletion of Crb2 in photoreceptors or Müller cells. We analyzed the consequences of targeted loss of CRB2 in the adult mouse retina using adeno-associated viral vectors encoding Cre recombinase and short hairpin RNA against Crb2. In vivo retinal imaging by means of optical coherence tomography on retinas lacking CRB2 in photoreceptors showed progressive thinning of the photoreceptor layer and cellular mislocalization. Electroretinogram recordings under scotopic conditions showed severe attenuation of the a-wave, confirming the degeneration of photoreceptors. Retinas lacking CRB2 in developing photoreceptors showed early onset of abnormal lamination, whereas retinas lacking CRB2 in developing Müller cells showed late onset retinal disorganization. Our data suggest that in the developing retina, CRB2 has redundant functions in Müller glial cells, while CRB2 has essential functions in photoreceptors. Our data suggest that short-term loss of CRB2 in adult mouse photoreceptors, but not in Müller glial cells, causes sporadic loss of adhesion between photoreceptors and Müller cells.


Assuntos
Proteínas de Membrana/metabolismo , Células Fotorreceptoras/metabolismo , Retinose Pigmentar/etiologia , Retinose Pigmentar/metabolismo , Animais , Células Ependimogliais/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retinose Pigmentar/genética
10.
PLoS Genet ; 9(12): e1003976, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339791

RESUMO

Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways.


Assuntos
Sistema Nervoso Central/metabolismo , Amaurose Congênita de Leber/genética , Proteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Retina/crescimento & desenvolvimento , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Mitose/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Retina/citologia , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células-Tronco/metabolismo
11.
PLoS One ; 8(1): e55173, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383096

RESUMO

BACKGROUND: To monitor viability of implanted genetically engineered and microencapsulated human stem cells (MicroBeads) in the mouse eye, and to study the impact of the beads and/or xenogenic cells on retinal integrity. METHODOLOGY/PRINCIPAL FINDINGS: MicroBeads were implanted into the subretinal space of SV126 wild type mice using an ab externo approach. Viability of microencapsulated cells was monitored by noninvasive retinal imaging (Spectralis™ HRA+OCT). Retinal integrity was also assessed with retinal imaging and upon the end of the study by light and electron microscopy. The implanted GFP-marked cells encapsulated in subretinal MicroBeads remained viable over a period of up to 4 months. Retinal integrity and viability appeared unaltered apart from the focal damage due to the surgical implantation, GFAP upregulation, and opsin mistargeting in the immediate surrounding tissue. CONCLUSIONS/SIGNIFICANCE: The accessibility for routine surgery and its immune privileged state make the eye an ideal target for release system implants for therapeutic substances, including neurotrophic and anti-angiogenic compounds or protein based biosimilars. Microencapsulated human stem cells (MicroBeads) promise to overcome limitations inherent with single factor release systems, as they are able to produce physiologic combinations of bioactive compounds.


Assuntos
Olho/citologia , Microesferas , Degeneração Retiniana/terapia , Transplante de Células-Tronco/métodos , Animais , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Oftalmoscopia/métodos , Retina/ultraestrutura , Tomografia de Coerência Óptica
12.
Hum Mol Genet ; 21(20): 4486-96, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22802073

RESUMO

Retinitis pigmentosa (RP) is a group of genetically heterogeneous, severe retinal diseases commonly leading to legal blindness. Mutations in the CNGB1a subunit of the rod cyclic nucleotide-gated (CNG) channel have been found to cause RP in patients. Here, we demonstrate the efficacy of gene therapy as a potential treatment for RP by means of recombinant adeno-associated viral (AAV) vectors in the CNGB1 knockout (CNGB1(-/-)) mouse model. To enable efficient packaging and rod-specific expression of the relatively large CNGB1a cDNA (~4 kb), we used an AAV expression cassette with a short rod-specific promoter and short regulatory elements. After injection of therapeutic AAVs into the subretinal space of 2-week-old CNGB1(-/-) mice, we assessed the restoration of the visual system by analyzing (i) CNG channel expression and localization, (ii) retinal function and morphology and (iii) vision-guided behavior. We found that the treatment not only led to expression of full-length CNGB1a, but also restored normal levels of the previously degraded CNGA1 subunit of the rod CNG channel. Both proteins co-localized in rod outer segments and formed regular CNG channel complexes within the treated area of the CNGB1(-/-) retina, leading to significant morphological preservation and a delay of retinal degeneration. In the electroretinographic analysis, we also observed restoration of rod-driven light responses. Finally, treated CNGB1(-/-) mice performed significantly better than untreated mice in a rod-dependent vision-guided behavior test. In summary, this work provides a proof-of-concept for the treatment of rod channelopathy-associated RP by AAV-mediated gene replacement.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Proteínas do Tecido Nervoso/genética , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Retinose Pigmentar/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Segmento Externo da Célula Bastonete/metabolismo
13.
Neuron ; 74(3): 504-16, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22578502

RESUMO

Glial cells release molecules that influence brain development, function, and disease. Calcium-dependent exocytosis has been proposed as potential release mechanism in astroglia, but the physiological relevance of "gliotransmission" in vivo remains controversial. We focused on the impact of glial exocytosis on sensory transduction in the retina. To this end, we generated transgenic mice to block exocytosis by Cre recombinase-dependent expression of the clostridial botulinum neurotoxin serotype B light chain, which cleaves vesicle-associated membrane protein 1-3. Ubiquitous and neuronal toxin expression caused perinatal lethality and a reduction of synaptic transmission thus validating transgene function. Toxin expression in Müller cells inhibited vesicular glutamate release and impaired glial volume regulation but left retinal histology and visual processing unaffected. Our model to study gliotransmission in vivo reveals specific functions of exocytotic glutamate release in retinal glia.


Assuntos
Exocitose/fisiologia , Ácido Glutâmico/metabolismo , Neuroglia/fisiologia , Retina/citologia , Animais , Animais Recém-Nascidos , Toxinas Botulínicas/genética , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas Tipo A , Carbocianinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Antagonistas de Estrogênios/farmacologia , Exocitose/efeitos dos fármacos , Exocitose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Integrases/genética , Integrases/metabolismo , Luz , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Neuroglia/ultraestrutura , Técnicas de Patch-Clamp , Aglutinina de Amendoim/metabolismo , Estimulação Luminosa , Tempo de Reação/genética , Estatísticas não Paramétricas , Tamoxifeno/farmacologia , Tomografia de Coerência Óptica , Raios Ultravioleta , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
15.
Mol Ther ; 18(12): 2057-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20628362

RESUMO

Congenital absence of cone photoreceptor function is associated with strongly impaired daylight vision and loss of color discrimination in human achromatopsia. Here, we introduce viral gene replacement therapy as a potential treatment for this disease in the CNGA3(-/-) mouse model. We show that such therapy can restore cone-specific visual processing in the central nervous system even if cone photoreceptors had been nonfunctional from birth. The restoration of cone vision was assessed at different stages along the visual pathway. Treated CNGA3(-/-) mice were able to generate cone photoreceptor responses and to transfer these signals to bipolar cells. In support, we found morphologically that treated cones expressed regular cyclic nucleotide-gated (CNG) channel complexes and opsins in outer segments, which previously they did not. Moreover, expression of CNGA3 normalized cyclic guanosine monophosphate (cGMP) levels in cones, delayed cone cell death and reduced the inflammatory response of Müller glia cells that is typical of retinal degenerations. Furthermore, ganglion cells from treated, but not from untreated, CNGA3(-/-) mice displayed cone-driven, light-evoked, spiking activity, indicating that signals generated in the outer retina are transmitted to the brain. Finally, we demonstrate that this newly acquired sensory information was translated into cone-mediated, vision-guided behavior.


Assuntos
Anormalidades Congênitas/terapia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Terapia Genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Clonagem Molecular , Anormalidades Congênitas/genética , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Knockout , Visão Ocular/genética
16.
PLoS One ; 4(10): e7507, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-19838301

RESUMO

BACKGROUND: Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. METHODOLOGY/PRINCIPAL FINDINGS: We achieved to adapt a commercial 3(rd) generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber's congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. CONCLUSIONS/SIGNIFICANCE: We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies.


Assuntos
Retina/metabolismo , Degeneração Retiniana/metabolismo , Tomografia de Coerência Óptica/métodos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas do Olho/genética , Feminino , Lasers , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Oftalmoscopia/métodos , Proteína do Retinoblastoma/genética
17.
Doc Ophthalmol ; 118(1): 55-61, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18483822

RESUMO

A broad spectrum of retinal diseases affects both the retinal vasculature and the neural retina, including photoreceptor and postreceptor layers. The accepted clinical hallmarks of acute retinopathy of prematurity (ROP) are dilation and tortuosity of the retinal vasculature. Additionally, significant early and persistent effects on photoreceptor and postreceptor neural structures and function are demonstrated in ROP. In this paper, we focus on the results of longitudinal studies of electroretinographic (ERG) and vascular features in rats with induced retinopathies that model the gamut of human ROP, mild to severe. Two potential targets for pharmaceutical interventions emerge from the observations. The first target is immature photoreceptors because the status of the photoreceptors at an early age predicts later vascular outcome; this approach is appealing as it holds promise to prevent ROP. The second target is the interplay of the neural and vascular retinal networks, which develop cooperatively. Beneficial pharmaceutical interventions may be measured in improved visual outcome as well as lessening of the vascular abnormalities.


Assuntos
Hipóxia , Isquemia , Degeneração Retiniana/fisiopatologia , Vasos Retinianos/patologia , Retinopatia da Prematuridade/fisiopatologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Humanos , Recém-Nascido , Ratos , Retina/fisiopatologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Retinopatia da Prematuridade/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/fisiologia
18.
Glia ; 55(14): 1486-97, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17705196

RESUMO

Mutations in the human Crumbs homologue-1 (CRB1) gene cause retinal blinding diseases, such as Leber congenital amaurosis and retinitis pigmentosa. In the previous studies we have shown that Crb1 resides in retinal Müller glia cells and that loss of Crb1 results in retinal degeneration (particularly in the inferior temporal quadrant of the mouse eye). Degeneration is increased by exposure to white light. Here, we studied the role of light and aging to gain a better understanding of the factors involved in the progress of retinal disease. Our data reveal that light is neither sufficient nor required to induce retinal disorganization and degeneration in young Crb1(-/-) mutant mice, suggesting that it rather modulates the retinal phenotype. Gene expression profiling showed that expression of five genes is altered in light-exposed Crb1(-/-) mutant retinas. Three of the five genes are involved in chromosome stabilization (Pituitary tumor transforming gene 1 or Pttg1, Establishment of cohesion 1 homolog 1 or Esco1, and a gene similar to histone H2B). In aged retinas, degeneration of photoreceptors, inner retinal neurons, and retinal pigment epithelium was practically limited to the inferior temporal quadrant. Loss of Crb1 in Müller glia cells resulted in an irregular number and size of their apical villi. We propose that Crb1 is required to regulate number and size of these Müller glia cell villi. The subsequent loss of retinal integrity resulted in neovascularization, in which blood vessels of the choroid protruded into the neural retina.


Assuntos
Envelhecimento/metabolismo , Neovascularização Patológica/genética , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Envelhecimento/genética , Envelhecimento/patologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Luz/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microvilosidades/metabolismo , Microvilosidades/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Neuroglia/patologia , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/fisiopatologia , Estimulação Luminosa/efeitos adversos , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Células Fotorreceptoras/fisiopatologia , Retina/patologia , Retina/fisiopatologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/fisiopatologia
19.
Eur J Nutr ; 46(5): 286-92, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17599238

RESUMO

Many epidemiological studies predict a role for homocysteine (HCys) in cardiovascular disease occurrence, progression, and risk factors. In vitro studies demonstrated that HCys is an atherogenic determinant that promotes oxidant stress, inflammation, endothelial dysfunction and cell proliferation. This study originally attempted to examine the mechanism by which exposure of endothelial cells to HCys (0-250 microM) initiates inflammatory reaction and oxidative stress, by (i) investigating whether physiological and pathophysiological concentrations of HCys exhibit a prooxidative activity in vitro, (ii) examining the interaction of monocyte adhesion (Mono Mac 6) to monolayers of human microvascular endothelial cells (HMEC-1) exposed to different HCys concentrations, and (iii) examining if adherent monocytes increase reactive oxygen species either in endothelial cells or in monocytes themselves. However, our results demonstrate that HCys had neither prooxidative nor cytotoxic effects on endothelial cells. Only a moderate time- and concentration-dependent increase in monocyte adhesion up to 28.3 +/- 5.5% was achieved relative to control after 4 h of HCys stimulation. This effect was accompanied by an increased VCAM and ICAM-1 mRNA expression. This "proinflammatory" effect appeared also when HMEC-1 cells were incubated with cysteine or glutathione at the concentration range 0-250 microM, demonstrating a non-specific rather than a specific HCys effect. In addition, adherent monocytes did not increase ROS formation neither in endothelial cells nor in monocytes themselves, indicating no direct or indirect cytotoxic or prooxidative effects of HCys.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Homocisteína/farmacologia , Monócitos/fisiologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Selectina E/análise , Endotélio Vascular/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/análise , Monócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Fatores de Tempo , Molécula 1 de Adesão de Célula Vascular/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA