Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 2(1): vbac032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669345

RESUMO

Motivation: Splice variant neoantigens are a potential source of tumor-specific antigen (TSA) that are shared between patients in a variety of cancers, including acute myeloid leukemia. Current tools for genomic prediction of splice variant neoantigens demonstrate promise. However, many tools have not been well validated with simulated and/or wet lab approaches, with no studies published that have presented a targeted immunopeptidome mass spectrometry approach designed specifically for identification of predicted splice variant neoantigens. Results: In this study, we describe NeoSplice, a novel computational method for splice variant neoantigen prediction based on (i) prediction of tumor-specific k-mers from RNA-seq data, (ii) alignment of differentially expressed k-mers to the splice graph and (iii) inference of the variant transcript with MHC binding prediction. NeoSplice demonstrates high sensitivity and precision (>80% on average across all splice variant classes) through in silico simulated RNA-seq data. Through mass spectrometry analysis of the immunopeptidome of the K562.A2 cell line compared against a synthetic peptide reference of predicted splice variant neoantigens, we validated 4 of 37 predicted antigens corresponding to 3 of 17 unique splice junctions. Lastly, we provide a comparison of NeoSplice against other splice variant prediction tools described in the literature. NeoSplice provides a well-validated platform for prediction of TSA vaccine targets for future cancer antigen vaccine studies to evaluate the clinical efficacy of splice variant neoantigens. Availability and implementation: https://github.com/Benjamin-Vincent-Lab/NeoSplice. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

2.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34396985

RESUMO

Although immune-checkpoint inhibitors (ICIs) have been a remarkable advancement in bladder cancer treatment, the response rate to single-agent ICIs remains suboptimal. There has been substantial interest in the use of epigenetic agents to enhance ICI efficacy, although precisely how these agents potentiate ICI response has not been fully elucidated. We identified entinostat, a selective HDAC1/3 inhibitor, as a potent antitumor agent in our immune-competent bladder cancer mouse models (BBN963 and BBN966). We demonstrate that entinostat selectively promoted immune editing of tumor neoantigens, effectively remodeling the tumor immune microenvironment, resulting in a robust antitumor response that was cell autonomous, dependent upon antigen presentation, and associated with increased numbers of neoantigen-specific T cells. Finally, combination treatment with anti-PD-1 and entinostat led to complete responses and conferred long-term immunologic memory. Our work defines a tumor cell-autonomous mechanism of action for entinostat and a strong preclinical rationale for the combined use of entinostat and PD-1 blockade in bladder cancer.


Assuntos
Antígenos de Neoplasias/efeitos dos fármacos , Benzamidas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Piridinas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imunidade/efeitos dos fármacos , Imunocompetência/efeitos dos fármacos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Linfócitos T/efeitos dos fármacos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia
3.
Genome Med ; 13(1): 101, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127050

RESUMO

BACKGROUND: Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE). METHODS: We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance, and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. RESULTS: From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized) were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides. CONCLUSIONS: Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Biologia Computacional/métodos , Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Sequência de Aminoácidos , Animais , COVID-19/virologia , Vacinas contra COVID-19/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química , Peptídeos/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
4.
Environ Monit Assess ; 191(3): 159, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30762135

RESUMO

Recording the causes, effects, and effect mechanisms of vegetation health is crucial to understand process-pattern interactions in ecosystem processes. NOX and SOX in the form of air pollution are both triggers and sources of vegetation health that can have an effect on the local or the global level and whose impacts need to be monitored. In this study, the growth patterns in Scots pines (Pinus sylvestris L.) were studied in the context of changing atmospheric depositions in the lowlands of north-eastern Germany. Under the influence of atmospheric sulfur (S) and nitrogen (N) depositions, pine stands showed temporal variations in their normal growth behavior. In such cases, the patterns of normal growth can be suppressed or accelerated. Pine stands which were influenced by high S deposition up until 1990 changed from suppressed growth to accelerated growth by decreasing S, but increasing N depositions between 1990 and 2003. The cause of these changes in pine growth patterns was imbalances in S and N nutrition, in particular, enrichments of sulfate, non-protein nitrogen or arginine, and finally, also imbalances and deficiencies in phosphorus, glucose, and adenosine triphosphate in the needles. Our long-term monitoring study shows that biochemical markers (traits) are crucial bioindicators for the qualitative and quantitative assessment of tree vitality and growth patterns in Scots pines. Furthermore, we were able to show that NOX and SOX depositions need to be monitored locally to be able to assess the local effects of biomolecular markers on the growth patterns in Scots pine stands.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Pinus sylvestris/química , Pinus sylvestris/fisiologia , Poluição do Ar/estatística & dados numéricos , Biomarcadores/química , Ecossistema , Alemanha , Estudos Longitudinais , Nitrogênio/análise , Fósforo/análise , Pinus
5.
Dalton Trans ; (4): 529-41, 2006 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-16402138

RESUMO

The selective oestrogen receptor modulator tamoxifen is a leading agent in the adjuvant treatment of breast cancer. Several organometallic moieties have been vectorised with tamoxifen, in order to improve on the latter's antiproliferative properties by the addition of a potentially cytotoxic moiety, and have been evaluated versus both oestrogen receptor positive (MCF7) and oestrogen receptor negative (MDA-MB231) breast cancer cells. For tamoxifen analogues with ((R,R)-trans-1,2-diaminocyclohexane)platinum(II), cyclopentadienyl rhenium tricarbonyl, and ruthenocene tethers, there was no enhancement of the antiproliferative effect on oestrogen receptor positive cells, nor any cytotoxic effect on oestrogen receptor negative cells, while those containing cyclopentadienyl titanium dichloride showed an oestrogenic effect. However, compounds where ferrocene replaces tamoxifen's phenyl ring were strongly cytotoxic against both cell lines. The synthesis and biological results of these compounds is reviewed and placed in the historic context of inorganic compounds in therapy.


Assuntos
Antineoplásicos/toxicidade , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Metais/química , Moduladores Seletivos de Receptor Estrogênico/toxicidade , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Humanos , Metais/toxicidade , Moduladores Seletivos de Receptor Estrogênico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA