Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38850438

RESUMO

PURPOSE: Paranasal anomalies, frequently identified in routine radiological screenings, exhibit diverse morphological characteristics. Due to the diversity of anomalies, supervised learning methods require large labelled dataset exhibiting diverse anomaly morphology. Self-supervised learning (SSL) can be used to learn representations from unlabelled data. However, there are no SSL methods designed for the downstream task of classifying paranasal anomalies in the maxillary sinus (MS). METHODS: Our approach uses a 3D convolutional autoencoder (CAE) trained in an unsupervised anomaly detection (UAD) framework. Initially, we train the 3D CAE to reduce reconstruction errors when reconstructing normal maxillary sinus (MS) image. Then, this CAE is applied to an unlabelled dataset to generate coarse anomaly locations by creating residual MS images. Following this, a 3D convolutional neural network (CNN) reconstructs these residual images, which forms our SSL task. Lastly, we fine-tune the encoder part of the 3D CNN on a labelled dataset of normal and anomalous MS images. RESULTS: The proposed SSL technique exhibits superior performance compared to existing generic self-supervised methods, especially in scenarios with limited annotated data. When trained on just 10% of the annotated dataset, our method achieves an area under the precision-recall curve (AUPRC) of 0.79 for the downstream classification task. This performance surpasses other methods, with BYOL attaining an AUPRC of 0.75, SimSiam at 0.74, SimCLR at 0.73 and masked autoencoding using SparK at 0.75. CONCLUSION: A self-supervised learning approach that inherently focuses on localizing paranasal anomalies proves to be advantageous, particularly when the subsequent task involves differentiating normal from anomalous maxillary sinuses. Access our code at https://github.com/mtec-tuhh/self-supervised-paranasal-anomaly .

2.
Laryngoscope ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520698

RESUMO

OBJECTIVE: Computer aided diagnostics (CAD) systems can automate the differentiation of maxillary sinus (MS) with and without opacification, simplifying the typically laborious process and aiding in clinical insight discovery within large cohorts. METHODS: This study uses Hamburg City Health Study (HCHS) a large, prospective, long-term, population-based cohort study of participants between 45 and 74 years of age. We develop a CAD system using an ensemble of 3D Convolutional Neural Network (CNN) to analyze cranial MRIs, distinguishing MS with opacifications (polyps, cysts, mucosal thickening) from MS without opacifications. The system is used to find correlations of participants with and without MS opacifications with clinical data (smoking, alcohol, BMI, asthma, bronchitis, sex, age, leukocyte count, C-reactive protein, allergies). RESULTS: The evaluation metrics of CAD system (Area Under Receiver Operator Characteristic: 0.95, sensitivity: 0.85, specificity: 0.90) demonstrated the effectiveness of our approach. MS with opacification group exhibited higher alcohol consumption, higher BMI, higher incidence of intrinsic asthma and extrinsic asthma. Male sex had higher prevalence of MS opacifications. Participants with MS opacifications had higher incidence of hay fever and house dust allergy but lower incidence of bee/wasp venom allergy. CONCLUSION: The study demonstrates a 3D CNN's ability to distinguish MS with and without opacifications, improving automated diagnosis and aiding in correlating clinical data in population studies. LEVEL OF EVIDENCE: 3 Laryngoscope, 2024.

3.
Int J Comput Assist Radiol Surg ; 19(2): 223-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37479942

RESUMO

PURPOSE: Paranasal anomalies are commonly discovered during routine radiological screenings and can present with a wide range of morphological features. This diversity can make it difficult for convolutional neural networks (CNNs) to accurately classify these anomalies, especially when working with limited datasets. Additionally, current approaches to paranasal anomaly classification are constrained to identifying a single anomaly at a time. These challenges necessitate the need for further research and development in this area. METHODS: We investigate the feasibility of using a 3D convolutional neural network (CNN) to classify healthy maxillary sinuses (MS) and MS with polyps or cysts. The task of accurately localizing the relevant MS volume within larger head and neck Magnetic Resonance Imaging (MRI) scans can be difficult, but we develop a strategy which includes the use of a novel sampling technique that not only effectively localizes the relevant MS volume, but also increases the size of the training dataset and improves classification results. Additionally, we employ a Multiple Instance Ensembling (MIE) prediction method to further boost classification performance. RESULTS: With sampling and MIE, we observe that there is consistent improvement in classification performance of all 3D ResNet and 3D DenseNet architecture with an average AUPRC percentage increase of 21.86 ± 11.92% and 4.27 ± 5.04% by sampling and 28.86 ± 12.80% and 9.85 ± 4.02% by sampling and MIE, respectively. CONCLUSION: Sampling and MIE can be effective techniques to improve the generalizability of CNNs for paranasal anomaly classification. We demonstrate the feasibility of classifying anomalies in the MS. We propose a data enlarging strategy through sampling alongside a novel MIE strategy that proves to be beneficial for paranasal anomaly classification in the MS.


Assuntos
Seio Maxilar , Redes Neurais de Computação , Humanos , Seio Maxilar/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Cabeça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA