Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 11(1): 13251, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168267

RESUMO

Mononuclear phagocytes (MNPs) participate in inflammation and repair after kidney injury, reflecting their complex nature. Dissection into refined functional subunits has been challenging and would benefit understanding of renal pathologies. Flow cytometric approaches are limited to classifications of either different MNP subsets or functional state. We sought to combine these two dimensions in one protocol that considers functional heterogeneity in each MNP subset. We identified five distinct renal MNP subsets based on a previously described strategy. In vitro polarization of bone marrow-derived macrophages (BMDM) into M1- and M2-like cells suggested functional distinction of CD86 + MHCII + CD206- and CD206 + cells. Combination of both distinction methods identified CD86 + MHCII + CD206- and CD206 + cells in all five MNP subsets, revealing their heterologous nature. Our approach revealed that MNP composition and their functional segmentation varied between different mouse models of kidney injury and, moreover, was dynamically regulated in a time-dependent manner. CD206 + cells from three analyzed MNP subsets had a higher ex vivo phagocytic capacity than CD86 + MHCII + CD206- counterparts, indicating functional uniqueness of each subset. In conclusion, our novel flow cytometric approach refines insights into renal MNP heterogeneity and therefore could benefit mechanistic understanding of renal pathology.


Assuntos
Citometria de Fluxo/métodos , Fagócitos/metabolismo , Animais , Antígenos de Superfície , Antígeno B7-2/imunologia , Genes MHC da Classe II/imunologia , Rim/lesões , Rim/patologia , Lectinas Tipo C/imunologia , Macrófagos/classificação , Macrófagos/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fagócitos/classificação , Receptores de Superfície Celular/imunologia
2.
J Am Soc Nephrol ; 32(9): 2315-2329, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34140400

RESUMO

BACKGROUND: Polypharmacy is common among patients with CKD, but little is known about the urinary excretion of many drugs and their metabolites among patients with CKD. METHODS: To evaluate self-reported medication use in relation to urine drug metabolite levels in a large cohort of patients with CKD, the German Chronic Kidney Disease study, we ascertained self-reported use of 158 substances and 41 medication groups, and coded active ingredients according to the Anatomical Therapeutic Chemical Classification System. We used a nontargeted mass spectrometry-based approach to quantify metabolites in urine; calculated specificity, sensitivity, and accuracy of medication use and corresponding metabolite measurements; and used multivariable regression models to evaluate associations and prescription patterns. RESULTS: Among 4885 participants, there were 108 medication-drug metabolite pairs on the basis of reported medication use and 78 drug metabolites. Accuracy was excellent for measurements of 36 individual substances in which the unchanged drug was measured in urine (median, 98.5%; range, 61.1%-100%). For 66 pairs of substances and their related drug metabolites, median measurement-based specificity and sensitivity were 99.2% (range, 84.0%-100%) and 71.7% (range, 1.2%-100%), respectively. Commonly prescribed medications for hypertension and cardiovascular risk reduction-including angiotensin II receptor blockers, calcium channel blockers, and metoprolol-showed high sensitivity and specificity. Although self-reported use of prescribed analgesics (acetaminophen, ibuprofen) was <3% each, drug metabolite levels indicated higher usage (acetaminophen, 10%-26%; ibuprofen, 10%-18%). CONCLUSIONS: This comprehensive screen of associations between urine drug metabolite levels and self-reported medication use supports the use of pharmacometabolomics to assess medication adherence and prescription patterns in persons with CKD, and indicates under-reported use of medications available over the counter, such as analgesics.


Assuntos
Adesão à Medicação , Preparações Farmacêuticas/urina , Polimedicação , Insuficiência Renal Crônica/urina , Autorrelato , Idoso , Estudos de Coortes , Feminino , Alemanha , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Sensibilidade e Especificidade , Urina/química
3.
Oncotarget ; 7(32): 51908-51921, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27340868

RESUMO

Chemotherapy is one of the pillars of anti-cancer therapy. Although chemotherapeutics cause regression of the primary tumor, many chemotherapeutics are often shown to induce or accelerate metastasis formation. Moreover, metastatic tumors are largely resistant against chemotherapy. As more than 90% of cancer patients die due to metastases and not due to primary tumor formation, novel drugs are needed to overcome these shortcomings. In this study, we identified the anticancer phytochemical Rocaglamide (Roc-A) to be an inhibitor of cancer cell migration, a crucial event in metastasis formation. We show that Roc-A inhibits cellular migration and invasion independently of its anti-proliferative and cytotoxic effects in different types of human cancer cells. Mechanistically, Roc-A treatment induces F-actin-based morphological changes in membrane protrusions. Further investigation of the molecular mechanisms revealed that Roc-A inhibits the activities of the small GTPases RhoA, Rac1 and Cdc42, the master regulators of cellular migration. Taken together, our results provide evidence that Roc-A may be a lead candidate for a new class of anticancer drugs that inhibit metastasis formation.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Movimento Celular/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas rho de Ligação ao GTP/efeitos dos fármacos
4.
J Biol Chem ; 289(21): 14996-5004, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24719332

RESUMO

NF-κB is an important transcription factor in the immune system, and aberrant NF-κB activity contributes to malignant diseases and autoimmunity. In T cells, NF-κB is activated upon TCR stimulation, and signal transduction to NF-κB activation is triggered by a cascade of phosphorylation events. However, fine-tuning and termination of TCR signaling are only partially understood. Phosphatases oppose the role of kinases by removing phosphate moieties. The catalytic activity of the protein phosphatase PP2A has been implicated in the regulation of NF-κB. PP2A acts in trimeric complexes in which the catalytic subunit is promiscuous and the regulatory subunit confers substrate specificity. To understand and eventually target NF-κB-specific PP2A functions it is essential to define the regulatory PP2A subunit involved. So far, the regulatory PP2A subunit that mediates NF-κB suppression in T cells remained undefined. By performing a siRNA screen in Jurkat T cells harboring a NF-κB-responsive luciferase reporter, we identified the PP2A regulatory subunit B56γ as negative regulator of NF-κB in TCR signaling. B56γ was strongly up-regulated upon primary human T cell activation, and B56γ silencing induced increased IκB kinase (IKK) and IκBα phosphorylation upon TCR stimulation. B56γ silencing enhanced NF-κB activity, resulting in increased NF-κB target gene expression including the T cell cytokine IL-2. In addition, T cell proliferation was increased upon B56γ silencing. These data help to understand the physiology of PP2A function in T cells and the pathophysiology of diseases involving PP2A and NF-κB.


Assuntos
NF-kappa B/imunologia , Proteína Fosfatase 2/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Western Blotting , Células Cultivadas , Expressão Gênica/genética , Expressão Gênica/imunologia , Humanos , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/imunologia , Proteínas I-kappa B/metabolismo , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-2/metabolismo , Isoenzimas/imunologia , Isoenzimas/metabolismo , Células Jurkat , Ativação Linfocitária/imunologia , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosforilação/imunologia , Proteína Quinase C/imunologia , Proteína Quinase C/metabolismo , Proteína Quinase C-theta , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Interferência de RNA , Receptores de Antígenos de Linfócitos T/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo
5.
Nucleic Acids Res ; 42(6): e41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24371283

RESUMO

DNA damage is tightly associated with various biological and pathological processes, such as aging and tumorigenesis. Although detection of DNA damage is attracting increasing attention, only a limited number of methods are available to quantify DNA lesions, and these techniques are tedious or only detect global DNA damage. In this study, we present a high-sensitivity long-run real-time PCR technique for DNA-damage quantification (LORD-Q) in both the mitochondrial and nuclear genome. While most conventional methods are of low-sensitivity or restricted to abundant mitochondrial DNA samples, we established a protocol that enables the accurate sequence-specific quantification of DNA damage in >3-kb probes for any mitochondrial or nuclear DNA sequence. In order to validate the sensitivity of this method, we compared LORD-Q with a previously published qPCR-based method and the standard single-cell gel electrophoresis assay, demonstrating a superior performance of LORD-Q. Exemplarily, we monitored induction of DNA damage and repair processes in human induced pluripotent stem cells and isogenic fibroblasts. Our results suggest that LORD-Q provides a sequence-specific and precise method to quantify DNA damage, thereby allowing the high-throughput assessment of DNA repair, genotoxicity screening and various other processes for a wide range of life science applications.


Assuntos
Núcleo Celular/genética , Dano ao DNA , Genoma Mitocondrial , Reação em Cadeia da Polimerase em Tempo Real/métodos , Células Cultivadas , Ensaio Cometa , DNA Mitocondrial/química , Humanos , Células Jurkat
6.
Cell ; 148(5): 908-21, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22341456

RESUMO

The extent to which the three-dimensional organization of the genome contributes to chromosomal translocations is an important question in cancer genomics. We generated a high-resolution Hi-C spatial organization map of the G1-arrested mouse pro-B cell genome and used high-throughput genome-wide translocation sequencing to map translocations from target DNA double-strand breaks (DSBs) within it. RAG endonuclease-cleaved antigen-receptor loci are dominant translocation partners for target DSBs regardless of genomic position, reflecting high-frequency DSBs at these loci and their colocalization in a fraction of cells. To directly assess spatial proximity contributions, we normalized genomic DSBs via ionizing radiation. Under these conditions, translocations were highly enriched in cis along single chromosomes containing target DSBs and within other chromosomes and subchromosomal domains in a manner directly related to pre-existing spatial proximity. By combining two high-throughput genomic methods in a genetically tractable system, we provide a new lens for viewing cancer genomes.


Assuntos
Genoma , Neoplasias/genética , Translocação Genética , Animais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Fase G1 , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células Precursoras de Linfócitos B/citologia , Receptores de Antígenos/genética
7.
Adv Immunol ; 106: 93-133, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20728025

RESUMO

Recurrent chromosomal abnormalities, especially chromosomal translocations, are strongly associated with certain subtypes of leukemia, lymphoma and solid tumors. The appearance of particular translocations or associated genomic alterations can be important indicators of disease prognosis, and in some cases, certain translocations may indicate appropriate therapy protocols. To date, most of our knowledge about chromosomal translocations has derived from characterization of the highly selected recurrent translocations found in certain cancers. Until recently, mechanisms that promote or suppress chromosomal translocations, in particular, those responsible for their initiation, have not been addressed. For translocations to occur, two distinct chromosomal loci must be broken, brought together (synapsed) and joined. Here, we discuss recent findings on processes and pathways that influence the initiation of chromosomal translocations, including the generation fo DNA double strand breaks (DSBs) by general factors or in the context of the Lymphocyte-specific V(D)J and IgH class-switch recombination processes. We also discuss the role of spatial proximity of DSBs in the interphase nucleus with respect to how DSBs on different chromosomes are justaposed for joining. In addition, we discuss the DNA DSB response and its role in recognizing and tethering chromosomal DSBs to prevent translocations, as well as potential roles of the classical and alternative DSB end-joining pathways in suppressing or promoting translocations. Finally, we discuss the potential roles of long range regulatory elements, such as the 3'IgH enhancer complex, in promoting the expression of certain translocations that are frequent in lymphomas and, thereby, contributing to their frequent appearance in tumors.


Assuntos
Neoplasias/genética , Translocação Genética , Animais , Linfócitos B/fisiologia , Quebra Cromossômica , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Genes RAG-1 , Humanos , Switching de Imunoglobulina , Leucemia/genética , Linfoma/genética , Cromossomo Filadélfia , Recombinação Genética , Sequências Reguladoras de Ácido Nucleico , Linfócitos T/fisiologia
8.
Cell Stem Cell ; 3(6): 625-36, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19041779

RESUMO

Hematopoietic stem cells (HSCs) originate within the aortic-gonado-mesonephros (AGM) region of the midgestation embryo, but the cell type responsible for their emergence is unknown since critical hematopoietic factors are expressed in both the AGM endothelium and its underlying mesenchyme. Here we employ a temporally restricted genetic tracing strategy to selectively label the endothelium, and separately its underlying mesenchyme, during AGM development. Lineage tracing endothelium, via an inducible VE-cadherin Cre line, reveals that the endothelium is capable of HSC emergence. The endothelial progeny migrate to the fetal liver, and later to the bone marrow, and are capable of expansion, self-renewal, and multilineage hematopoietic differentiation. HSC capacity is exclusively endothelial, as ex vivo analyses demonstrate lack of VE-cadherin Cre induction in circulating and fetal liver hematopoietic populations. Moreover, AGM mesenchyme, as selectively traced via a myocardin Cre line, is incapable of hematopoiesis. Our genetic tracing strategy therefore reveals an endothelial origin of HSCs.


Assuntos
Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Células Endoteliais/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular/genética , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Camadas Germinativas/embriologia , Integrases/metabolismo , Mesoderma/fisiologia , Camundongos , Camundongos Transgênicos , Biologia Molecular/métodos , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA