Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Structure ; 31(9): 1038-1051.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37392738

RESUMO

The Ebola virus matrix protein VP40 mediates viral budding and negatively regulates viral RNA synthesis. The mechanisms by which these two functions are exerted and regulated are unknown. Using a high-resolution crystal structure of Sudan ebolavirus (SUDV) VP40, we show here that two cysteines in the flexible C-terminal arm of VP40 form a stabilizing disulfide bridge. Notably, the two cysteines are targets of posttranslational redox modifications and interact directly with the host`s thioredoxin system. Mutation of the cysteines impaired the budding function of VP40 and relaxed its inhibitory role for viral RNA synthesis. In line with these results, the growth of recombinant Ebola viruses carrying cysteine mutations was impaired and the released viral particles were elongated. Our results revealed the exact positions of the cysteines in the C-terminal arm of SUDV VP40. The cysteines and/or their redox status are critically involved in the differential regulation of viral budding and viral RNA synthesis.


Assuntos
Ebolavirus , Proteínas da Matriz Viral , Ebolavirus/genética , Ebolavirus/metabolismo , Mutação , Oxirredução , Sudão , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Humanos
2.
J Med Chem ; 65(19): 13328-13342, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36179320

RESUMO

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic. The main protease (Mpro, 3CLpro) of SARS-CoV-2 is a key enzyme that processes polyproteins translated from the viral RNA. Mpro is therefore an attractive target for the design of inhibitors that block viral replication. We report the diastereomeric resolution of the previously designed SARS-CoV-2 Mpro α-ketoamide inhibitor 13b. The pure (S,S,S)-diastereomer, 13b-K, displays an IC50 of 120 nM against the Mpro and EC50 values of 0.8-3.4 µM for antiviral activity in different cell types. Crystal structures have been elucidated for the Mpro complexes with each of the major diastereomers, the active (S,S,S)-13b (13b-K), and the nearly inactive (R,S,S)-13b (13b-H); results for the latter reveal a novel binding mode. Pharmacokinetic studies show good levels of 13b-K after inhalative as well as after peroral administration. The active inhibitor (13b-K) is a promising candidate for further development as an antiviral treatment for COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Pandemias , Poliproteínas , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , RNA Viral , Proteínas não Estruturais Virais/metabolismo
3.
Vaccines (Basel) ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35455282

RESUMO

The urgent need for vaccines against Ebola virus (EBOV) was underscored by the large outbreak in West Africa (2014-2016). Since then, several promising vaccine candidates have been tested in pre-clinical and clinical studies. As a result, two vaccines were approved for human use in 2019/2020, of which one includes a heterologous adenovirus/Modified Vaccinia virus Ankara (MVA) prime-boost regimen. Here, we tested new vaccine candidates based on the recombinant MVA vector, encoding the EBOV nucleoprotein (MVA-EBOV-NP) or glycoprotein (MVA-EBOV-GP) for their efficacy after homologous prime-boost immunization in mice. Our aim was to investigate the role of each antigen in terms of efficacy and correlates of protection. Sera of mice vaccinated with MVA-EBOV-GP were virus-neutralizing and MVA-EBOV-NP immunization readily elicited interferon-γ-producing NP-specific CD8+ T cells. While mock-vaccinated mice succumbed to EBOV infection, all vaccinated mice survived and showed drastically decreased viral loads in sera and organs. In addition, MVA-EBOV-NP vaccinated mice became susceptible to lethal EBOV infection after depletion of CD8+ T cells prior to challenge. This study highlights the potential of MVA-based vaccines to elicit humoral immune responses as well as a strong and protective CD8+ T cell response and contributes to understanding the possible underlying mechanisms.

4.
Life Sci Alliance ; 5(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35110370

RESUMO

Acute kidney injury is associated with mortality in COVID-19 patients. However, host cell changes underlying infection of renal cells with SARS-CoV-2 remain unknown and prevent understanding of the molecular mechanisms that may contribute to renal pathology. Here, we carried out quantitative translatome and whole-cell proteomics analyses of primary renal proximal and distal tubular epithelial cells derived from human donors infected with SARS-CoV-2 or MERS-CoV to disseminate virus and cell type-specific changes over time. Our findings revealed shared pathways modified upon infection with both viruses, as well as SARS-CoV-2-specific host cell modulation driving key changes in innate immune activation and cellular protein quality control. Notably, MERS-CoV infection-induced specific changes in mitochondrial biology that were not observed in response to SARS-CoV-2 infection. Furthermore, we identified extensive modulation in pathways associated with kidney failure that changed in a virus- and cell type-specific manner. In summary, we provide an overview of the effects of SARS-CoV-2 or MERS-CoV infection on primary renal epithelial cells revealing key pathways that may be essential for viral replication.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/virologia , Rim , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Proteoma , Proteômica , SARS-CoV-2/fisiologia , Biomarcadores , COVID-19/metabolismo , COVID-19/virologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Biologia Computacional/métodos , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Túbulos Renais Distais , Túbulos Renais Proximais , Mitocôndrias/genética , Mitocôndrias/metabolismo , Cultura Primária de Células , Proteômica/métodos , Replicação Viral
5.
Nat Commun ; 12(1): 5536, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545074

RESUMO

Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. The ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types including primary differentiated human bronchial epithelial cells, (partially) reverses the virus-induced translational shut-down, improves viability of infected cells and counteracts the CoV-mediated downregulation of IRE1α and the ER chaperone BiP. Proteome-wide analyses revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including essential (HERPUD1) or novel (UBA6 and ZNF622) factors of ER quality control, and ER-associated protein degradation complexes. Additionally, thapsigargin blocks the CoV-induced selective autophagic flux involving p62/SQSTM1. The data show that thapsigargin hits several central mechanisms required for CoV replication, suggesting that this compound (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs.


Assuntos
Estresse do Retículo Endoplasmático , SARS-CoV-2/fisiologia , Replicação Viral/fisiologia , Animais , Autofagia/efeitos dos fármacos , Brônquios/patologia , COVID-19/patologia , COVID-19/virologia , Diferenciação Celular/efeitos dos fármacos , Extratos Celulares , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Coronavirus Humano 229E/fisiologia , Regulação para Baixo/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Proteínas de Choque Térmico/metabolismo , Humanos , Macrolídeos/farmacologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , Tapsigargina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34162739

RESUMO

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) has emerged as the infectious agent causing the pandemic coronavirus disease 2019 (COVID-19) with dramatic consequences for global human health and economics. Previously, we reached clinical evaluation with our vector vaccine based on modified vaccinia virus Ankara (MVA) against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an infection in humans similar to SARS and COVID-19. Here, we describe the construction and preclinical characterization of a recombinant MVA expressing full-length SARS-CoV-2 spike (S) protein (MVA-SARS-2-S). Genetic stability and growth characteristics of MVA-SARS-2-S, plus its robust expression of S protein as antigen, make it a suitable candidate vaccine for industrial-scale production. Vaccinated mice produced S-specific CD8+ T cells and serum antibodies binding to S protein that neutralized SARS-CoV-2. Prime-boost vaccination with MVA-SARS-2-S protected mice sensitized with a human ACE2-expressing adenovirus from SARS-CoV-2 infection. MVA-SARS-2-S is currently being investigated in a phase I clinical trial as aspirant for developing a safe and efficacious vaccine against COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Vacinas contra COVID-19/normas , Relação Dose-Resposta Imunológica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T , Vacinação , Vaccinia virus
7.
J Immunol Methods ; 490: 112958, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412174

RESUMO

The current Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) pandemic is a public health emergency of international concern. Sensitive and precise diagnostic tools are urgently needed. In this study, we developed a SARS-CoV-2 spike (S1) protein enzyme-linked immunosorbent assay (ELISA) to detect SARS-CoV-2-specific antibodies. The SARS-CoV-2 S1 ELISA was found to be specific [97.8% (95% CI, 96.7% - 98.5%)], reproducible and precise (intra-assay coefficient of variability (CV) 5.3%, inter-assay CV 7.9%). A standard curve and the interpolation of arbitrary ELISA units per milliliter served to reduce the variability between different tests and operators. Cross-reactivity to other human coronaviruses was addressed by using sera positive for MERS-CoV- and hCoV HKU1-specific antibodies. Monitoring antibody development in various samples of twenty-three and single samples of twenty-nine coronavirus disease 2019 (COVID-19) patients revealed seroconversion and neutralizing antibodies against authentic SARS-CoV-2 in all cases. The comparison of the SARS-CoV-2 (S1) ELISA with a commercially available assay showed a better sensitivity for the in-house ELISA. The results demonstrate a high reproducibility, specificity and sensitivity of the newly developed ELISA, which is suitable for the detection of SARS-CoV-2 S1 protein-specific antibody responses.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Células Epiteliais/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Chlorocebus aethiops , Ensaios Enzimáticos , Ensaio de Imunoadsorção Enzimática , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Soroconversão , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
8.
Lancet Infect Dis ; 21(4): 507-516, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33065039

RESUMO

BACKGROUND: The 2013-16 Ebola virus disease epidemic in west Africa caused international alarm due to its rapid and extensive spread resulting in a significant death toll and social unrest within the affected region. The large number of cases provided an opportunity to study the long-term kinetics of Zaire ebolavirus-specific immune response of survivors in addition to known contacts of those infected with the virus. METHODS: In this observational cohort study, we worked with leaders of Ebola virus disease survivor associations in two regions of Guinea, Guéckédou and Coyah, to recruit survivors of Ebola virus disease, contacts from households of individuals known to have had Ebola virus disease, and individuals who were not knowingly associated with infected individuals or had not had Ebola virus disease symptoms to serve as negative controls. We did Zaire ebolavirus glycoprotein-specific T cell analysis on peripheral blood mononuclear cells (PBMCs) on location in Guinea and transported plasma and PBMCs back to Europe for antibody quantification by ELISA, functional neutralising antibody analysis using live Zaire ebolavirus, and T cell phenotype studies. We report on the longitudinal cellular and humoral response among Ebola virus disease survivors and highlight potentially paucisymptomatic infection. FINDINGS: We recruited 117 survivors of Ebola virus disease, 66 contacts, and 23 negative controls. The mean neutralising antibody titre among the Ebola virus disease survivors 3-14 months after infection was 1/174 (95% CI 1/136-1/223). Individual results varied greatly from 1/10 to more than 1/1000 but were on average ten times greater than that induced after 1 month by single dose Ebola virus vaccines. Following reactivation with glycoprotein peptide, the mean T cell responses among 116 Ebola virus disease survivors as measured by ELISpot was 305 spot-forming units (95% CI 257-353). The dominant CD8+ polyfunctional T cell phenotype, as measured among 53 Ebola virus disease survivors, was interferon γ+, tumour necrosis factor+, interleukin-2-, and the mean response was 0·046% of total CD8+ T cells (95% CI 0·021-0·071). Additionally, both neutralising antibody and T cell responses were detected in six (9%) of 66 Ebola virus disease contacts. We also noted that four (3%) of 117 individuals with Ebola virus disease infections did not have circulating Ebola virus-specific antibodies 3 months after infection. INTERPRETATION: The continuous high titre of neutralising antibodies and increased T cell response might support the concept of long-term protective immunity in survivors. The existence of antibody and T cell responses in contacts of individuals with Ebola virus disease adds further evidence to the existence of sub-clinical Ebola virus infection. FUNDING: US Food & Drug Administration, Horizon 2020 EU EVIDENT, Wellcome, UK Department for International Development. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Anticorpos Antivirais/sangue , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Sobreviventes/estatística & dados numéricos , Linfócitos T/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Criança , Pré-Escolar , Ebolavirus/patogenicidade , Epidemias , Feminino , Guiné/epidemiologia , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Humanos , Imunidade Celular , Imunidade Humoral , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
9.
Lancet ; 396(10249): 467-478, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32702298

RESUMO

BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. METHODS: We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18-55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-γ enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. FINDINGS: Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493-1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96-317; n=127), and were boosted following a second dose (639 EU, 360-792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R2=0·67 by Marburg VN; p<0·001). INTERPRETATION: ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. FUNDING: UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Imunogenicidade da Vacina , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/efeitos adversos , Vacinas Virais/imunologia , Acetaminofen/uso terapêutico , Adenovirus dos Símios/genética , Adulto , Analgésicos não Narcóticos/uso terapêutico , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Feminino , Vetores Genéticos/administração & dosagem , Humanos , Imunização Secundária , Imunoglobulina G/sangue , Masculino , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2 , Método Simples-Cego , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Reino Unido , Vacinas Virais/administração & dosagem
10.
Cells ; 9(7)2020 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707734

RESUMO

The intracellular transport of nucleocapsids of the highly pathogenic Marburg, as well as Ebola virus (MARV, EBOV), represents a critical step during the viral life cycle. Intriguingly, a population of these nucleocapsids is distributed over long distances in a directed and polar fashion. Recently, it has been demonstrated that the intracellular transport of filoviral nucleocapsids depends on actin polymerization. While it was shown that EBOV requires Arp2/3-dependent actin dynamics, the details of how the virus exploits host actin signaling during intracellular transport are largely unknown. Here, we apply a minimalistic transfection system to follow the nucleocapsid-like structures (NCLS) in living cells, which can be used to robustly quantify NCLS transport in live cell imaging experiments. Furthermore, in cells co-expressing LifeAct, a marker for actin dynamics, NCLS transport is accompanied by pulsative actin tails appearing on the rear end of NCLS. These actin tails can also be preserved in fixed cells, and can be visualized via high resolution imaging using STORM in transfected, as well as EBOV infected, cells. The application of inhibitory drugs and siRNA depletion against actin regulators indicated that EBOV NCLS utilize the canonical Arp2/3-Wave1-Rac1 pathway for long-distance transport in cells. These findings highlight the relevance of the regulation of actin polymerization during directed EBOV nucleocapsid transport in human cells.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Ebolavirus/metabolismo , Espaço Intracelular/metabolismo , Nucleocapsídeo/metabolismo , Transdução de Sinais , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
11.
Lancet Infect Dis ; 20(7): 816-826, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32325038

RESUMO

BACKGROUND: Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection continue to rise in the Arabian Peninsula 7 years after it was first described in Saudi Arabia. MERS-CoV poses a significant risk to public health security because of an absence of currently available effective countermeasures. We aimed to assess the safety and immunogenicity of the candidate simian adenovirus-vectored vaccine expressing the full-length spike surface glycoprotein, ChAdOx1 MERS, in humans. METHODS: This dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial was done at the Centre for Clinical Vaccinology and Tropical Medicine (Oxford, UK) and included healthy people aged 18-50 years with negative pre-vaccination tests for HIV antibodies, hepatitis B surface antigen, and hepatitis C antibodies (and a negative urinary pregnancy test for women). Participants received a single intramuscular injection of ChAdOx1 MERS at three different doses: the low-dose group received 5 × 109 viral particles, the intermediate-dose group received 2·5 × 1010 viral particles, and the high-dose group received 5 × 1010 viral particles. The primary objective was to assess safety and tolerability of ChAdOx1 MERS, measured by the occurrence of solicited, unsolicited, and serious adverse events after vaccination. The secondary objective was to assess the cellular and humoral immunogenicity of ChAdOx1 MERS, measured by interferon-γ-linked enzyme-linked immunospot, ELISA, and virus neutralising assays after vaccination. Participants were followed up for up to 12 months. This study is registered with ClinicalTrials.gov, NCT03399578. FINDINGS: Between March 14 and Aug 15, 2018, 24 participants were enrolled: six were assigned to the low-dose group, nine to the intermediate-dose group, and nine to the high-dose group. All participants were available for follow-up at 6 months, but five (one in the low-dose group, one in the intermediate-dose group, and three in the high-dose group) were lost to follow-up at 12 months. A single dose of ChAdOx1 MERS was safe at doses up to 5 × 1010 viral particles with no vaccine-related serious adverse events reported by 12 months. One serious adverse event reported was deemed to be not related to ChAdOx1 MERS. 92 (74% [95% CI 66-81]) of 124 solicited adverse events were mild, 31 (25% [18-33]) were moderate, and all were self-limiting. Unsolicited adverse events in the 28 days following vaccination considered to be possibly, probably, or definitely related to ChAdOx1 MERS were predominantly mild in nature and resolved within the follow-up period of 12 months. The proportion of moderate and severe adverse events was significantly higher in the high-dose group than in the intermediate-dose group (relative risk 5·83 [95% CI 2·11-17·42], p<0·0001) Laboratory adverse events considered to be at least possibly related to the study intervention were self-limiting and predominantly mild in severity. A significant increase from baseline in T-cell (p<0·003) and IgG (p<0·0001) responses to the MERS-CoV spike antigen was observed at all doses. Neutralising antibodies against live MERS-CoV were observed in four (44% [95% CI 19-73]) of nine participants in the high-dose group 28 days after vaccination, and 19 (79% [58-93]) of 24 participants had antibodies capable of neutralisation in a pseudotyped virus neutralisation assay. INTERPRETATION: ChAdOx1 MERS was safe and well tolerated at all tested doses. A single dose was able to elicit both humoral and cellular responses against MERS-CoV. The results of this first-in-human clinical trial support clinical development progression into field phase 1b and 2 trials. FUNDING: UK Department of Health and Social Care, using UK Aid funding, managed by the UK National Institute for Health Research.


Assuntos
Relação Dose-Resposta Imunológica , Imunogenicidade da Vacina , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas Virais/administração & dosagem , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais , Infecções por Coronavirus/prevenção & controle , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Reino Unido , Vacinas de DNA , Adulto Jovem
12.
Science ; 368(6489): 409-412, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32198291

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a global health emergency. An attractive drug target among coronaviruses is the main protease (Mpro, also called 3CLpro) because of its essential role in processing the polyproteins that are translated from the viral RNA. We report the x-ray structures of the unliganded SARS-CoV-2 Mpro and its complex with an α-ketoamide inhibitor. This was derived from a previously designed inhibitor but with the P3-P2 amide bond incorporated into a pyridone ring to enhance the half-life of the compound in plasma. On the basis of the unliganded structure, we developed the lead compound into a potent inhibitor of the SARS-CoV-2 Mpro The pharmacokinetic characterization of the optimized inhibitor reveals a pronounced lung tropism and suitability for administration by the inhalative route.


Assuntos
Amidas/química , Amidas/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Cisteína Endopeptidases/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/química , Amidas/metabolismo , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacocinética , Antivirais/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proteases 3C de Coronavírus , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Desenho de Fármacos , Meia-Vida , Humanos , Pulmão/metabolismo , Camundongos , Modelos Moleculares , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacocinética , Domínios Proteicos , Multimerização Proteica , Piridonas/química , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
13.
Oral Maxillofac Surg ; 24(2): 151-156, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32002693

RESUMO

PURPOSE: In cases of highly atrophic alveolar ridges, augmentation procedures became a frequent procedure to gain optimal conditions for dental implants. Especially in the maxilla sinus floor elevation procedures represent the gold standard pre-prosthetic and mainly successful procedure. The perforation of the Schneiderian is one of the most common complications. The aim of this study was to evaluate whether the intraoperative perforation of the Schneiderian membrane has an impact on long-term implant success. METHODS: Thirty-four patients from a former study collective of the years 2005 and 2006 with a total of 41 perforations were invited for a follow-up examination to determine the long-term success rates after sinus floor elevation and subsequent implantation. RESULTS: Twenty-one patients with 25 perforations were subsequently re-evaluated. One implant was lost due to a of periimplant infection after 232 days, resulting in an implant survival rate of 98% within a mean follow-up period of 8.9 years (± 1.5 years). CONCLUSION: Regarding the long-term success, there was no increased risk for implant failure or other persisting complications, e.g., sinusitis, after intraoperative perforation during sinus floor elevation in this study.


Assuntos
Implantes Dentários , Levantamento do Assoalho do Seio Maxilar , Implantação Dentária Endóssea , Falha de Restauração Dentária , Humanos , Maxila , Seio Maxilar , Mucosa Nasal , Fatores de Risco
14.
J Infect Dis ; 222(4): 572-582, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31603201

RESUMO

BACKGROUND: Ebola virus (EBOV) epidemics pose a major public health risk. There currently is no licensed human vaccine against EBOV. The safety and immunogenicity of a recombinant EBOV glycoprotein (GP) nanoparticle vaccine formulated with or without Matrix-M adjuvant were evaluated to support vaccine development. METHODS: A phase 1, placebo-controlled, dose-escalation trial was conducted in 230 healthy adults to evaluate 4 EBOV GP antigen doses as single- or 2-dose regimens with or without adjuvant. Safety and immunogenicity were assessed through 1-year postdosing. RESULTS: All EBOV GP vaccine formulations were well tolerated. Receipt of 2 doses of EBOV GP with adjuvant showed a rapid increase in anti-EBOV GP immunoglobulin G titers with peak titers observed on Day 35 representing 498- to 754-fold increases from baseline; no evidence of an antigen dose response was observed. Serum EBOV-neutralizing and binding antibodies using wild-type Zaire EBOV (ZEBOV) or pseudovirion assays were 3- to 9-fold higher among recipients of 2-dose EBOV GP with adjuvant, compared with placebo on Day 35, which persisted through 1 year. CONCLUSIONS: Ebola virus GP vaccine with Matrix-M adjuvant is well tolerated and elicits a robust and persistent immune response. These data suggest that further development of this candidate vaccine for prevention of EBOV disease is warranted.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Nanopartículas/administração & dosagem , Saponinas/administração & dosagem , Proteínas do Envelope Viral/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Austrália , Feminino , Voluntários Saudáveis , Humanos , Masculino , Segurança , Vacinação , Adulto Jovem
15.
Sci Rep ; 9(1): 16292, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705137

RESUMO

MERS-CoV seronegative and seropositive camels received a single intramuscular dose of ChAdOx1 MERS, a replication-deficient adenoviral vectored vaccine expressing MERS-CoV spike protein, with further groups receiving control vaccinations. Infectious camels with active naturally acquired MERS-CoV infection, were co-housed with the vaccinated camels at a ratio of 1:2 (infected:vaccinated); nasal discharge and virus titres were monitored for 14 days. Overall, the vaccination reduced virus shedding and nasal discharge (p = 0.0059 and p = 0.0274, respectively). Antibody responses in seropositive camels were enhancedby the vaccine; these camels had a higher average age than seronegative. Older seronegative camels responded more strongly to vaccination than younger animals; and neutralising antibodies were detected in nasal swabs. Further work is required to optimise vaccine regimens for younger seronegative camels.


Assuntos
Camelus , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Virais , Animais , Adenoviridae/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camelus/imunologia , Camelus/metabolismo , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Surtos de Doenças , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Vacinação/métodos , Vacinas Virais/imunologia , Vacinas Virais/farmacologia , Zoonoses/epidemiologia
16.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429347

RESUMO

Ebola virus (EBOV) and Nipah virus (NiV) infection of humans can cause fatal disease and constitutes a public health threat. In contrast, EBOV and NiV infection of fruit bats, the putative (EBOV) or proven (NiV) natural reservoir, is not associated with disease, and it is currently unknown how these animals control the virus. The human interferon (IFN)-stimulated antiviral effector protein tetherin (CD317, BST-2) blocks release of EBOV- and NiV-like particles from cells and is counteracted by the EBOV glycoprotein (GP). In contrast, it is unknown whether fruit bat tetherin restricts virus infection and is susceptible to GP-driven antagonism. Here, we report the sequence of fruit bat tetherin and show that its expression is IFN stimulated and associated with strong antiviral activity. Moreover, we demonstrate that EBOV-GP antagonizes tetherin orthologues of diverse species but fails to efficiently counteract fruit bat tetherin in virus-like particle (VLP) release assays. However, unexpectedly, tetherin was dispensable for robust IFN-mediated inhibition of EBOV spread in fruit bat cells. Thus, the VLP-based model systems mimicking tetherin-mediated inhibition of EBOV release and its counteraction by GP seem not to adequately reflect all aspects of EBOV release from IFN-stimulated fruit bat cells, potentially due to differences in tetherin expression levels that could not be resolved by the present study. In contrast, tetherin expression was essential for IFN-dependent inhibition of NiV infection, demonstrating that IFN-induced fruit bat tetherin exerts antiviral activity and may critically contribute to control of NiV and potentially other highly virulent viruses in infected animals.IMPORTANCE Ebola virus and Nipah virus (EBOV and NiV) can cause fatal disease in humans. In contrast, infected fruit bats do not develop symptoms but can transmit the virus to humans. Why fruit bats but not humans control infection is largely unknown. Tetherin is an antiviral host cell protein and is counteracted by the EBOV glycoprotein in human cells. Here, employing model systems, we show that tetherin of fruit bats displays higher antiviral activity than human tetherin and is largely resistant against counteraction by the Ebola virus glycoprotein. Moreover, we demonstrate that induction of tetherin expression is critical for interferon-mediated inhibition of NiV but, for at present unknown reasons, not EBOV spread in fruit bat cells. Collectively, our findings identify tetherin as an antiviral effector of innate immune responses in fruit bats, which might allow these animals to control infection with NiV and potentially other viruses that cause severe disease in humans.


Assuntos
Antivirais/farmacologia , Antígeno 2 do Estroma da Médula Óssea/farmacologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/virologia , Infecções por Henipavirus/prevenção & controle , Vírus Nipah/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Quirópteros , Doença pelo Vírus Ebola/metabolismo , Infecções por Henipavirus/metabolismo , Infecções por Henipavirus/virologia , Humanos , Imunidade Inata/efeitos dos fármacos , Interferons/farmacologia , Primatas , Roedores , Liberação de Vírus
17.
J Craniomaxillofac Surg ; 46(11): 1934-1938, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30249486

RESUMO

Oftentimes the discussion of long-term success rates and treatment modalities becomes a central issue in consultations with patients. The aim of this study was to retrospectively evaluate survival rates of teeth after apicoectomy in an established private practice for Oral and Maxillofacial Surgery in Kiel, Germany. All teeth treated with apicoectomy between 2001 and 2006 were included. Treatment success was previously defined as preservation of the tooth. Putative influence factors on success as kind and quality of endodontic treatment, additional intraoperative endodontic filling, inflammatory status, tooth mobility, and pre- and postoperative X-rays were further evaluated. A total of 149 teeth could be included. The mean observation period was 6.3 (SD: 4.4) years. In all, 48.3% of these teeth could be retained after a 10-year period. Teeth that received an additional retrograde root canal filling during surgery resulted in a significantly higher success rate (p = 0.0237) compared to those with orthograde root canal fillings or without additional endodontic treatment. The quality of endodontic treatment had no impact (p = 0.125). Our results suggest that apical surgery is a reliable procedure to treat and ensure the survival of symptomatic teeth in the posterior region for several years. A significant improvement was further determined for a retrograde filling.


Assuntos
Apicectomia/efeitos adversos , Perda de Dente/etiologia , Feminino , Humanos , Masculino , Radiografia Dentária , Estudos Retrospectivos , Fatores de Tempo , Perda de Dente/diagnóstico por imagem
18.
J Infect Dis ; 218(suppl_5): S318-S326, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30165666

RESUMO

The single surface glycoprotein (GP) of filoviruses is indispensable for recognition of its cellular receptor and infection of target cells. To study the intracellular trafficking of GP by using live-cell imaging, the mucin-like domain of Marburg virus (MARV) GP was replaced by the fluorophore mCherry (GP∆MLD_mCherry). Intracellular distribution, surface transport, and recruitment of GP∆MLD_mCherry into virus-like particles were similar to observations for wild-type GP. Using reverse genetics, we generated a recombinant MARV expressing GP∆MLD_mCherry (recMARV MARVGP∆MLD_mCherry). Time-lapse microscopy of recMARV MARVGP∆MLD_mCherry-infected cells revealed that GP∆MLD_mCherry-positive vesicles were transported to the cell surface in a tubulin-dependent manner. Moreover, dual-color live-cell imaging revealed cotransport of GPΔMLD_mCherry and VP40 and their colocalization at the plasma membrane. In this proof-of-concept study we showed that the newly developed GP∆MLD_mCherry is a promising tool to elucidate intracellular trafficking and assembly pathways of MARV.


Assuntos
Corantes Fluorescentes/administração & dosagem , Glicoproteínas/metabolismo , Marburgvirus/metabolismo , Marburgvirus/fisiologia , Transporte Proteico/fisiologia , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Membrana Celular/virologia , Células HEK293 , Humanos
19.
J Craniomaxillofac Surg ; 46(6): 953-957, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680682

RESUMO

PURPOSE: The positional non-synostotic plagiocephaly represents a cranial asymmetry affecting all 3 dimensions. The aim of this study was to evaluate volumetric indices to assess the efficiency in improving non-synostotic cranial asymmetries in treatment with head orthoses. MATERIAL AND METHODS: A total of 96 infants were included in this observational retrospective study. The cohort was further divided into subgroups according to age of helmet supply (younger/older than 7.5 months) and duration of therapy (less/more than 150 days). With 3-dimensional photogrammetry data sets, the skull volume was separated into quadrants and set in relation to each other to create an Anterior Cranial Asymmetry Index (ACAI) and a Posterior Cranial Asymmetry Index (PCAI) as 3-dimensional parameters. RESULTS: Treatment with head orthoses led to a significant reduction of ACAI (p < 0.0001) and PCAI (p = 0.001). Cranial asymmetry was more severe in the occipital region and significantly improved mainly during the first 75 days with a 40.08% decrease of PCAI value in the short-term therapy in the younger treatment subgroup (p = 0.003). CONCLUSIONS: The introduced parameters sufficiently reproduce the improvement of asymmetry during helmet therapy, following the trend of already established parameters. Asymmetry was significantly improved in the occiput region, and helmet therapy was highly effective in younger infants and in the early treatment period.


Assuntos
Cabeça/anormalidades , Imageamento Tridimensional/métodos , Aparelhos Ortopédicos , Plagiocefalia não Sinostótica/diagnóstico por imagem , Plagiocefalia não Sinostótica/terapia , Crânio/anormalidades , Estudos de Coortes , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/terapia , Assimetria Facial , Dispositivos de Proteção da Cabeça , Humanos , Processamento de Imagem Assistida por Computador/métodos , Lactente , Fotogrametria/métodos , Plagiocefalia/diagnóstico por imagem , Plagiocefalia/terapia , Estudos Retrospectivos , Crânio/diagnóstico por imagem , Resultado do Tratamento
20.
Proc Natl Acad Sci U S A ; 115(5): 1075-1080, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339477

RESUMO

The intracytoplasmic movement of nucleocapsids is a crucial step in the life cycle of enveloped viruses. Determination of the viral components necessary for viral nucleocapsid transport competency is complicated by the dynamic and complex nature of nucleocapsid assembly and the lack of appropriate model systems. Here, we established a live-cell imaging system based on the ectopic expression of fluorescent Ebola virus (EBOV) fusion proteins, allowing the visualization and analysis of the movement of EBOV nucleocapsid-like structures with different protein compositions. Only three of the five EBOV nucleocapsid proteins-nucleoprotein, VP35, and VP24-were necessary and sufficient to form transport-competent nucleocapsid-like structures. The transport of these structures was found to be dependent on actin polymerization and to have dynamics that were undistinguishable from those of nucleocapsids in EBOV-infected cells. The intracytoplasmic movement of nucleocapsid-like structures was completely independent of the viral matrix protein VP40 and the viral surface glycoprotein GP. However, VP40 greatly enhanced the efficiency of nucleocapsid recruitment into filopodia, the sites of EBOV budding.


Assuntos
Nucleocapsídeo/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Antivirais/química , Linhagem Celular Tumoral , Citoplasma/metabolismo , Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/metabolismo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA