Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Commun ; 14(1): 8020, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049428

RESUMO

BMP-1/tolloid-like proteinases (BTPs) are major players in tissue morphogenesis, growth and repair. They act by promoting the deposition of structural extracellular matrix proteins and by controlling the activity of matricellular proteins and TGF-ß superfamily growth factors. They have also been implicated in several pathological conditions such as fibrosis, cancer, metabolic disorders and bone diseases. Despite this broad range of pathophysiological functions, the putative existence of a specific endogenous inhibitor capable of controlling their activities could never be confirmed. Here, we show that procollagen C-proteinase enhancer-2 (PCPE-2), a protein previously reported to bind fibrillar collagens and to promote their BTP-dependent maturation, is primarily a potent and specific inhibitor of BTPs which can counteract their proteolytic activities through direct binding. PCPE-2 therefore differs from the cognate PCPE-1 protein and extends the possibilities to fine-tune BTP activities, both in physiological conditions and in therapeutic settings.


Assuntos
Glicoproteínas , Peptídeo Hidrolases , Humanos , Glicoproteínas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Morfogênese , Peptídeos e Proteínas de Sinalização Intercelular
2.
Front Mol Biosci ; 10: 1026810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876041

RESUMO

The cell surface receptor cluster of differentiation 44 (CD44) is the main hyaluronan receptor of the human body. At the cell surface, it can be proteolytically processed by different proteases and was shown to interact with different matrix metalloproteinases. Upon proteolytic processing of CD44 and generation of a C-terminal fragment (CTF), an intracellular domain (ICD) is released after intramembranous cleavage by the γ-secretase complex. This intracellular domain then translocates to the nucleus and induces transcriptional activation of target genes. In the past CD44 was identified as a risk gene for different tumor entities and a switch in CD44 isoform expression towards isoform CD44s associates with epithelial to mesenchymal transition (EMT) and cancer cell invasion. Here, we introduce meprin ß as a new sheddase of CD44 and use a CRISPR/Cas9 approach to deplete CD44 and its sheddases ADAM10 and MMP14 in HeLa cells. We here identify a regulatory loop at the transcriptional level between ADAM10, CD44, MMP14 and MMP2. We show that this interplay is not only present in our cell model, but also across different human tissues as deduced from GTEx (Gene Tissue Expression) data. Furthermore, we identify a close relation between CD44 and MMP14 that is also reflected in functional assays for cell proliferation, spheroid formation, migration and adhesion.

3.
Gastric Cancer ; 26(4): 542-552, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36976399

RESUMO

BACKGROUND: The gastric microbiome and inflammation play a key role in gastric cancer (GC) by regulating the immune response in a complex manner and by inflammatory events supporting carcinogenesis. Meprin ß is a zinc endopeptidase and participates in tissue homeostasis, intestinal barrier function and immunological processes. It influences local inflammatory processes, dysbiosis and the microbiome. Here, we tested the hypothesis that meprin ß is expressed in GC and of tumor biological significance. PATIENTS AND METHODS: Four hundred forty whole mount tissue sections of patients with therapy-naive GC were stained with an anti-meprin ß antibody. The histoscore and staining pattern were analyzed for each case. Following dichotomization at the median histoscore into a "low" and "high" group, the expression was correlated with numerous clinicopathological patient characteristics. RESULTS: Meprin ß was found intracellularly and at the cell membrane of GC. Cytoplasmic expression correlated with the phenotype according to Lauren, microsatellite instability and PD-L1 status. Membranous expression correlated with intestinal phenotype, mucin-1-, E-cadherin-, ß-catenin status, mucin typus, microsatellite instability, KRAS mutation and PD-L1-positivity. Patients with cytoplasmic expression of meprin ß showed a better overall and tumor-specific survival. CONCLUSIONS: Meprin ß is differentially expressed in GC and has potential tumor biological relevance. It might function as a tumor suppressor or promotor depending on histoanatomical site and context.


Assuntos
Antígeno B7-H1 , Neoplasias Gástricas , Humanos , Antígeno B7-H1/genética , Neoplasias Gástricas/patologia , Instabilidade de Microssatélites , Mucinas/genética , Membrana Celular/metabolismo
4.
FEBS J ; 290(1): 93-111, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944080

RESUMO

Membrane-type-I matrix metalloproteinase (MT1-MMP) is one of six human membrane-bound MMPs and is responsible for extracellular matrix remodelling by degrading several substrates like fibrillar collagens, including types I-III, or fibronectin. Moreover, MT1-MMP was described as a key player in cancer progression and it is involved in various inflammatory processes, as well as in the pathogenesis of Alzheimer's disease (AD). The membrane-tethered metalloprotease meprin ß as well as a disintegrin and metalloproteinase 10 (ADAM10) and ADAM17 are also associated with these diseases. Interestingly, meprin ß, ADAM10/17 and MT1-MMP also have a shared substrate pool including the interleukin-6 receptor and the amyloid precursor protein. We investigated the interaction of these proteases, focusing on a possible connection between MT1-MMP and meprin ß, to elucidate the potential mutual regulations of both enzymes. Herein, we show that besides ADAM10/17, MT1-MMP is also able to shed meprin ß from the plasma membrane, leading to the release of soluble meprin ß. Mass spectrometry-based cleavage site analysis revealed that the cleavage of meprin ß by all three proteases occurs between Pro602 and Ser603 , N-terminal of the EGF-like domain. Furthermore, only inactive human pro-meprin ß is shed by MT1-MMP, which is again in accordance with the shedding capability observed for ADAM10/17. Vice versa, meprin ß also appears to shed MT1-MMP, indicating a complex regulatory network. Further studies will elucidate this well-orchestrated proteolytic web under distinct conditions in health and disease and will possibly show whether the loss of one of the above-mentioned sheddases can be compensated by the other enzymes.


Assuntos
Proteína ADAM10 , Proteína ADAM17 , Metaloproteinase 14 da Matriz , Proteínas de Membrana , Humanos , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Membrana Celular/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
5.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1347-1357, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322418

RESUMO

The horseshoe crab Limulus polyphemus is one of few extant Limulus species, which date back to ∼250 million years ago under the conservation of a common Bauplan documented by fossil records. It possesses the only proteolytic blood-coagulation and innate immunity system outside vertebrates and is a model organism for the study of the evolution and function of peptidases. The astacins are a family of metallopeptidases that share a central ∼200-residue catalytic domain (CD), which is found in >1000 species across holozoans and, sporadically, bacteria. Here, the zymogen of an astacin from L. polyphemus was crystallized and its structure was solved. A 34-residue, mostly unstructured pro-peptide (PP) traverses, and thus blocks, the active-site cleft of the CD in the opposite direction to a substrate. A central `PP motif' (F35-E-G-D-I39) adopts a loop structure which positions Asp38 to bind the catalytic metal, replacing the solvent molecule required for catalysis in the mature enzyme according to an `aspartate-switch' mechanism. Maturation cleavage of the PP liberates the cleft and causes the rearrangement of an `activation segment'. Moreover, the mature N-terminus is repositioned to penetrate the CD moiety and is anchored to a buried `family-specific' glutamate. Overall, this mechanism of latency is reminiscent of that of the other three astacins with known zymogenic and mature structures, namely crayfish astacin, human meprin ß and bacterial myroilysin, but each shows specific structural characteristics. Remarkably, myroilysin lacks the PP motif and employs a cysteine instead of the aspartate to block the catalytic metal.


Assuntos
Ácido Aspártico , Metaloproteases , Animais , Humanos , Metaloproteases/metabolismo , Precursores Enzimáticos/química , Domínio Catalítico , Peptídeo Hidrolases/metabolismo
6.
Cell Mol Life Sci ; 79(3): 168, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35235058

RESUMO

ß-Site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) is the major described ß-secretase to generate Aß peptides in Alzheimer's disease (AD). However, all therapeutic attempts to block BACE1 activity and to improve AD symptoms have so far failed. A potential candidate for alternative Aß peptides generation is the metalloproteinase meprin ß, which cleaves APP predominantly at alanine in p2 and in this study we can detect an increased meprin ß expression in AD brain. Here, we report the generation of the transgenic APP/lon mouse model of AD lacking the functional Mep1b gene (APP/lon × Mep1b-/-). We examined levels of canonical and truncated Aß species using urea-SDS-PAGE, ELISA and immunohistochemistry in brains of APP/lon mouse × Mep1b-/-. Additionally, we investigated the cognitive abilities of these mice during the Morris water maze task. Aß1-40 and 1-42 levels are reduced in APP/lon mice when meprin ß is absent. Immunohistochemical staining of mouse brain sections revealed that N-terminally truncated Aß2-x peptide deposition is decreased in APP/lon × Mep1b-/- mice. Importantly, loss of meprin ß improved cognitive abilities and rescued learning behavior impairments in APP/lon mice. These observations indicate an important role of meprin ß within the amyloidogenic pathway and Aß production in vivo.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Aprendizagem , Transtornos da Memória/patologia , Metaloendopeptidases/deficiência , Idoso , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Cruzamentos Genéticos , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Metaloendopeptidases/metabolismo , Camundongos Knockout , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional
7.
FEBS Lett ; 596(5): 534-556, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34762736

RESUMO

Systemic inflammatory disorders (SIDs) comprise a broad range of diseases characterized by dysregulated excessive innate immune responses. Severe forms of SIDs can lead to organ failure and death, and their increasing incidence represents a major issue for the healthcare system. Protease-mediated ectodomain shedding of cytokines and their receptors represents a central mechanism in the regulation of inflammatory responses. The metalloprotease A disintegrin and metalloproteinase (ADAM) 17 is the best-characterized ectodomain sheddase capable of releasing TNF-α and soluble IL-6 receptor, which are decisive factors of systemic inflammation. Recently, meprin metalloproteases were also identified as IL-6 receptor sheddases and activators of the pro-inflammatory cytokines IL-1ß and IL-18. In different mouse models of SID, particularly those mimicking a sepsis-like phenotype, ADAM17 and meprins have been found to promote disease progression. In this review, we summarize the role of ADAM10, ADAM17, and meprins in the onset and progression of sepsis and discuss their potential as therapeutic targets.


Assuntos
Sepse , Animais , Camundongos , Proteína ADAM10 , Proteína ADAM17/genética , Secretases da Proteína Precursora do Amiloide/genética , Citocinas , Inflamação , Metaloproteases , Receptores de Interleucina-6 , Tiopronina
8.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34919140

RESUMO

Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.


Assuntos
Proteína ADAM17/antagonistas & inibidores , Células Endoteliais/metabolismo , Necroptose , Neoplasias/etiologia , Neoplasias/patologia , Animais , Antineoplásicos/farmacologia , Biomarcadores , Biomarcadores Tumorais , Comunicação Celular , Morte Celular , Suscetibilidade a Doenças/imunologia , Humanos , Necroptose/genética , Invasividade Neoplásica , Metástase Neoplásica , Inoculação de Neoplasia , Neoplasias/metabolismo , Neoplasias/terapia , Proteólise , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Front Mol Biosci ; 8: 702341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692768

RESUMO

Meprin ß is a metalloprotease associated with neurodegeneration, inflammation, extracellular matrix homeostasis, transendothelial cell migration, and cancer. In this study, we investigated two melanoma-associated variants of meprin ß, both exhibiting a single amino acid exchange, namely, meprin ß G45R and G89R. Based on the structural data of meprin ß and with regard to the position of the amino acid exchanges, we hypothesized an increase in proteolytic activity in the case of the G45R variant due to the induction of a potential new activation site and a decrease in proteolytic activity from the G89R variant due to structural instability. Indeed, the G89R variant showed, overall, a reduced expression level compared to wild-type meprin ß, accompanied by decreased activity and lower cell surface expression but strong accumulation in the endoplasmic reticulum. This was further supported by the analysis of the shedding of the interleukin-6 receptor (IL-6R) by meprin ß and its variants. In transfected HEK cells, the G89R variant was found to generate less soluble IL-6R, whereas the expression of meprin ß G45R resulted in increased shedding of the IL-6R compared to wild-type meprin ß and the G89R variant. A similar tendency of the induced shedding capacity of G45R was seen for the well-described meprin ß substrate CD99. Furthermore, employing an assay for cell migration in a collagen IV matrix, we observed that the transfection of wild-type meprin ß and the G45R variant resulted in increased migration of HeLa cells, while the G89R variant led to diminished mobility.

10.
FASEB J ; 35(7): e21677, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125978

RESUMO

Meprin ß is a zinc-dependent metalloprotease exhibiting a unique cleavage specificity with strong preference for acidic amino acids at the cleavage site. Proteomic studies revealed a diverse substrate pool of meprin ß including the interleukin-6 receptor (IL-6R) and the amyloid precursor protein (APP). Dysregulation of meprin ß is often associated with pathological conditions such as chronic inflammation, fibrosis, or Alzheimer's disease (AD). The extracellular regulation of meprin ß including interactors, sheddases, and activators has been intensively investigated while intracellular regulation has been barely addressed in the literature. This study aimed to analyze C-terminal phosphorylation of meprin ß with regard to cell surface expression and proteolytic activity. By immunoprecipitation of endogenous meprin ß from the colon cancer cell line Colo320 and subsequent LC-MS analysis, we identified several phosphorylation sites in its C-terminal region. Here, T694 in the C-terminus of meprin ß was the most preferred residue after phorbol 12-myristate 13-acetate (PMA) stimulation. We further demonstrated the role of protein kinase C (PKC) isoforms for meprin ß phosphorylation and identified the involvement of PKC-α and PKC-ß. As a result of phosphorylation, the meprin ß activity at the cell surface is reduced and, consequently, the extent of substrate cleavage is diminished. Our data indicate that this decrease of the surface activity is caused by the internalization and degradation of meprin ß.


Assuntos
Membrana Celular/metabolismo , Neoplasias do Colo/patologia , Espaço Extracelular/metabolismo , Metaloendopeptidases/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteólise , Neoplasias do Colo/metabolismo , Regulação da Expressão Gênica , Humanos , Metaloendopeptidases/genética , Fosforilação , Proteína Quinase C beta/genética , Proteína Quinase C-alfa/genética , Células Tumorais Cultivadas
11.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673639

RESUMO

Meprin α is a zinc metalloproteinase (metzincin) that has been implicated in multiple diseases, including fibrosis and cancers. It has proven difficult to find small molecules that are capable of selectively inhibiting meprin a, or its close relative meprin b, over numerous other metzincins which, if inhibited, would elicit unwanted effects. We recently identified possible molecular starting points for meprin a-specific inhibition through an HTS effort (see part I, preceding paper). Here, in part II, we report further efforts to optimize potency and selectivity. We hope that a hydroxamic acid meprin α inhibitor probe will help define the therapeutic potential for small molecule meprin a inhibition and spur further drug discovery efforts in the area of zinc metalloproteinase inhibition.

12.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671080

RESUMO

Meprin α and ß are zinc-dependent proteinases implicated in multiple diseases including cancers, fibrosis, and Alzheimer's. However, until recently, only a few inhibitors of either meprin were reported and no inhibitors are in preclinical development. Moreover, inhibitors of other metzincins developed in previous years are not effective in inhibiting meprins suggesting the need for de novo discovery effort. To address the paucity of tractable meprin inhibitors we developed ultrahigh-throughput assays and conducted parallel screening of >650,000 compounds against each meprin. As a result of this effort, we identified five selective meprin α hits belonging to three different chemotypes (triazole-hydroxyacetamides, sulfonamide-hydroxypropanamides, and phenoxy-hydroxyacetamides). These hits demonstrated a nanomolar to micromolar inhibitory activity against meprin α with low cytotoxicity and >30-fold selectivity against meprin ß and other related metzincincs. These selective inhibitors of meprin α provide a good starting point for further optimization.

13.
Front Cell Dev Biol ; 9: 622390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738281

RESUMO

Cluster of differentiation 109 (CD109) is a glycosylphosphatidylinositol (GPI)-anchored protein expressed on primitive hematopoietic stem cells, activated platelets, CD4+ and CD8+ T cells, and keratinocytes. In recent years, CD109 was also associated with different tumor entities and identified as a possible future diagnostic marker linked to reduced patient survival. Also, different cell signaling pathways were proposed as targets for CD109 interference including the TGFß, JAK-STAT3, YAP/TAZ, and EGFR/AKT/mTOR pathways. Here, we identify the metalloproteinase meprin ß to cleave CD109 at the cell surface and thereby induce the release of cleavage fragments of different size. Major cleavage was identified within the bait region of CD109 residing in the middle of the protein. To identify the structural localization of the bait region, homology modeling and single-particle analysis were applied, resulting in a molecular model of membrane-associated CD109, which allows for the localization of the newly identified cleavage sites for meprin ß and the previously published cleavage sites for the metalloproteinase bone morphogenetic protein-1 (BMP-1). Full-length CD109 localized on extracellular vesicles (EVs) was also identified as a release mechanism, and we can show that proteolytic cleavage of CD109 at the cell surface reduces the amount of CD109 sorted to EVs. In summary, we identified meprin ß as the first membrane-bound protease to cleave CD109 within the bait region, provide a first structural model for CD109, and show that cell surface proteolysis correlates negatively with CD109 released on EVs.

14.
Sci Rep ; 10(1): 21612, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303781

RESUMO

The cytokine interleukin-6 (IL-6) fulfills its pleiotropic functions via different modes of signaling. Regenerative and anti-inflammatory activities are mediated via classic signaling, in which IL-6 binds to the membrane-bound IL-6 receptor (IL-6R). For IL-6 trans-signaling, which accounts for the pro-inflammatory properties of the cytokine, IL-6 activates its target cells via soluble forms of the IL-6R (sIL-6R). We have previously shown that the majority of sIL-6R in human serum originates from proteolytic cleavage and mapped the cleavage site of the IL-6R. The cleavage occurs between Pro-355 and Val-356, which is the same cleavage site that the metalloprotease ADAM17 uses in vitro. However, sIL-6R serum levels are unchanged in hypomorphic ADAM17ex/ex mice, making the involvement of ADAM17 questionable. In order to identify other proteases that could be relevant for sIL-6R generation in vivo, we perform a screening approach based on the known cleavage site. We identify several candidate proteases and characterize the cysteine protease cathepsin S (CTSS) in detail. We show that CTSS is able to cleave the IL-6R in vitro and that the released sIL-6R is biologically active and can induce IL-6 trans-signaling. However, CTSS does not use the Pro-355/Val-356 cleavage site, and sIL-6R serum levels are not altered in Ctss-/- mice. In conclusion, we identify a novel protease of the IL-6R that can induce IL-6 trans-signaling, but does not contribute to steady-state sIL-6R serum levels.


Assuntos
Catepsinas/fisiologia , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Hidrólise , Técnicas In Vitro , Camundongos
15.
Cells ; 9(7)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630818

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that causes the most prevalent dementia in the elderly people. Obesity and insulin resistance, which may cause major health problems per se, are risk factors for AD, and cytokines such as interleukin-6 (IL-6) have a role in these conditions. IL-6 can signal either through a membrane receptor or by trans-signaling, which can be inhibited by the soluble form of the co-receptor gp130 (sgp130). We have addressed the possibility that blocking IL-6 trans-signaling in the brain could have an effect in the triple transgenic 3xTg-AD mouse model of AD and/or in obesity progression, by crossing 3xTg-AD mice with GFAP-sgp130Fc mice. To serve as control groups, GFAP-sgp130Fc mice were also crossed with C57BL/6JOlaHsd mice. Seventeen-month-old mice were fed a control diet (18% kcal from fat) and a high-fat diet (HFD; 58.4% kcal from fat). In our experimental conditions, the 3xTg-AD model showed a mild amyloid phenotype, which nevertheless altered the control of body weight and related endocrine and metabolic factors, suggestive of a hypermetabolic state. The inhibition of IL-6 trans-signaling modulated some of these traits in both 3xTg-AD and control mice, particularly during HFD, and in a sex-dependent manner. These experiments provide evidence of IL-6 trans-signaling playing a role in the CNS of a mouse model of AD.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Fenótipo , Transdução de Sinais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Animais , Receptor gp130 de Citocina/genética , Feminino , Proteína Glial Fibrilar Ácida/genética , Hibridização Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Aumento de Peso
16.
FASEB J ; 34(5): 6675-6687, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237095

RESUMO

The triggering receptor expressed on myeloid cells 2 (TREM2) is a multifunctional surface protein that affects survival, migration, and phagocytic capacity of myeloid cells. Soluble TREM2 levels were found to be increased in early stages of sporadic and familial Alzheimer's disease (AD) probably reflecting a defensive microglial response to some initial brain damage. The disintegrin and metalloproteases (ADAM) 10 and 17 were identified as TREM2 sheddases. We demonstrate that meprin ß is a direct TREM2 cleaving enzyme using ADAM10/17 deficient HEK293 cells. LC-MS/MS analysis of recombinant TREM2 incubated with meprin ß revealed predominant cleavage between Arg136 and Asp137, distant to the site identified for ADAM10/17. We further demonstrate that the metalloprotease meprin ß cleaves TREM2 on macrophages concomitant with decreased levels of soluble TREM2 in the serum of Mep1b-/- mice compared to WT controls. Isolated BMDMs from Mep1b-/- mice showed significantly increased full-length TREM2 levels and enhanced phagocytosis efficiency compared to WT cells. The diminished constitutive shedding of TREM2 on meprin ß deficient macrophages could be rescued by ADAM stimulation through LPS treatment. Our data provide evidence that meprin ß is a TREM2 sheddase on macrophages and suggest that multiple proteases may be involved in the generation of soluble TREM2.


Assuntos
Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Metaloendopeptidases/fisiologia , Fagocitose , Receptores Imunológicos/metabolismo , Animais , Arginina/metabolismo , Ácido Aspártico/metabolismo , Macrófagos/citologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Receptores Imunológicos/genética
17.
Cell Mol Life Sci ; 77(2): 331-350, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31209506

RESUMO

Disintegrin and metalloproteinases (ADAMs) 10 and 17 can release the extracellular part of a variety of membrane-bound proteins via ectodomain shedding important for many biological functions. So far, substrate identification focused exclusively on membrane-anchored ADAM10 and ADAM17. However, besides known shedding of ADAM10, we identified ADAM8 as a protease capable of releasing the ADAM17 ectodomain. Therefore, we investigated whether the soluble ectodomains of ADAM10/17 (sADAM10/17) exhibit an altered substrate spectrum compared to their membrane-bound counterparts. A mass spectrometry-based N-terminomics approach identified 134 protein cleavage events in total and 45 common substrates for sADAM10/17 within the secretome of murine cardiomyocytes. Analysis of these cleavage sites confirmed previously identified amino acid preferences. Further in vitro studies verified fibronectin, cystatin C, sN-cadherin, PCPE-1 as well as sAPP as direct substrates of sADAM10 and/or sADAM17. Overall, we present the first degradome study for sADAM10/17, thereby introducing a new mode of proteolytic activity within the protease web.


Assuntos
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Miócitos Cardíacos/metabolismo
18.
Nat Genet ; 52(1): 40-47, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844321

RESUMO

Valvular heart disease is observed in approximately 2% of the general population1. Although the initial observation is often localized (for example, to the aortic or mitral valve), disease manifestations are regularly observed in the other valves and patients frequently require surgery. Despite the high frequency of heart valve disease, only a handful of genes have so far been identified as the monogenic causes of disease2-7. Here we identify two consanguineous families, each with two affected family members presenting with progressive heart valve disease early in life. Whole-exome sequencing revealed homozygous, truncating nonsense alleles in ADAMTS19 in all four affected individuals. Homozygous knockout mice for Adamts19 show aortic valve dysfunction, recapitulating aspects of the human phenotype. Expression analysis using a lacZ reporter and single-cell RNA sequencing highlight Adamts19 as a novel marker for valvular interstitial cells; inference of gene regulatory networks in valvular interstitial cells positions Adamts19 in a highly discriminatory network driven by the transcription factor lymphoid enhancer-binding factor 1 downstream of the Wnt signaling pathway. Upregulation of endocardial Krüppel-like factor 2 in Adamts19 knockout mice precedes hemodynamic perturbation, showing that a tight balance in the Wnt-Adamts19-Klf2 axis is required for proper valve maturation and maintenance.


Assuntos
Proteínas ADAMTS/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Doenças das Valvas Cardíacas/etiologia , Proteínas ADAMTS/genética , Animais , Família , Feminino , Doenças das Valvas Cardíacas/patologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Knockout , Linhagem , Análise de Célula Única , Via de Sinalização Wnt
19.
Cancer Metastasis Rev ; 38(3): 347-356, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31482488

RESUMO

A crucial step for tumor cell extravasation and metastasis is the migration through the extracellular matrix, which requires proteolytic activity. Hence, proteases, particularly matrix metalloproteases (MMPs), have been discussed as therapeutic targets and their inhibition should diminish tumor growth and metastasis. The metalloproteases meprin α and meprin ß are highly abundant on intestinal enterocytes and their expression was associated with different stages of colorectal cancer. Due to their ability to cleave extracellular matrix (ECM) components, they were suggested as pro-tumorigenic enzymes. Additionally, both meprins were shown to have pro-inflammatory activity by cleaving cytokines and their receptors, which correlates with chronic intestinal inflammation and associated conditions. On the other hand, meprin ß was identified as an essential enzyme for the detachment and renewal of the intestinal mucus, important to prevent bacterial overgrowth and infection. Considering this, it is hard to estimate whether high activity of meprins is generally detrimental or if these enzymes have also protective functions in certain cancer types. For instance, for colorectal cancer, patients with high meprin ß expression in tumor tissue exhibit a better survival prognosis, which is completely different to prostate cancer. This demonstrates that the very same enzyme may have contrary effects on tumor initiation and growth, depending on its tissue and subcellular localization. Hence, precise knowledge about proteolytic enzymes is required to design the most efficient therapeutic options for cancer treatment. In this review, we summarize the current findings on meprins' functions, expression, and cancer-associated variants with possible implications for tumor progression and metastasis.


Assuntos
Metaloendopeptidases/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Animais , Humanos , Metaloendopeptidases/biossíntese , Metástase Neoplásica , Microambiente Tumoral
20.
Brain Behav Immun ; 82: 145-159, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31401302

RESUMO

Alzheimer's disease (AD) is the most commonly diagnosed dementia but its underlying pathological mechanisms still unclear. Neuroinflammation and secretion of cytokines such as interleukin-6 (IL-6) accompany the main hallmarks of the disease: amyloid plaques and neurofibrillary tangles. In this study, we analyzed the role of IL-6 trans-signaling in two mouse models of AD, Tg2576 and 3xTg-AD mice. The inhibition of IL-6 trans-signaling partially rescued the AD-induced mortality in females of both models. Before amyloid plaques deposition, it reversed AD-induced changes in exploration and anxiety (but did not affect locomotion) in Tg2576 female mice. However, after plaque deposition the only behavioral trait affected by the inhibition of IL-6 trans-signaling was locomotion. Results in the Morris water maze suggest that cognitive flexibility was reduced by the blocking of the IL-6 trans-signaling in young and old Tg2576 female mice. The inhibition of IL-6 trans-signaling also decreased amyloid plaque burden in cortex and hippocampus, and Aß40 and Aß42 levels in the cortex, of Tg2576 female mice. The aforementioned changes might be correlated with changes in blood vessels and matrix structure and organization rather than changes in neuroinflammation. 3xTgAD mice showed a very mild phenotype regarding amyloid cascade, but results were in accordance with those of Tg2576 mice. These results strongly suggest that the inhibition of the IL-6 trans-signaling could represent a powerful therapeutic target in AD.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/fisiopatologia , Interleucina-6/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Amiloidose/patologia , Animais , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Fragmentos de Peptídeos , Placa Amiloide/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA