Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Phys Med Biol ; 69(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38198720

RESUMO

Objective. A discrete ordinates Boltzmann solver has recently been developed for use as a fast and accurate dose engine for calculation of photon and proton beams. The purpose of this study is to apply the algorithm to the inverse planning process for photons and protons and to evaluate the impact that this has on the quality of the final solution.Approach.The method was implemented into an iterative least-squares inverse planning optimiser, with the Boltzmann solver used every 20 iterations over the total of 100 iterations. Elemental dose distributions for the intensity modulation and the dose changes at the intermediate iterations were calculated by a convolution algorithm for photons and a simple analytical model for protons. The method was evaluated for 12 patients in the heterogeneous tissue environment encountered in radiotherapy of lung tumours. Photon arc and proton arc treatments were considered in this study. The results were compared with those for use of the Boltzmann solver solely at the end of inverse planning or not at all.Main results.Application of the Boltzmann solver at the end of inverse planning shows the dose heterogeneity in the planning target volume to be greater than calculated by convolution and empirical methods, with the median root-mean-square dose deviation increasing from 3.7 to 5.3 for photons and from 1.9 to 3.4 for proton arcs. Use of discrete ordinates throughout inverse planning enables homogeneity of target coverage to be maintained throughout, the median root-mean-square dose deviation being 3.6 for photons and 2.3 for protons. Dose to critical structures is similar with discrete ordinates and conventional methods. Time for inverse planning with discrete ordinates takes around 1-2 h using a contemporary computing environment.Significance.By incorporating the Boltzmann solver into an iterative least squares inverse planning optimiser, accurate dose calculation in a heterogeneous medium is obtained throughout inverse planning, with the result that the final dose distribution is of the highest quality.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Prótons , Fótons/uso terapêutico , Pulmão , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
2.
Phys Imaging Radiat Oncol ; 28: 100518, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38077270

RESUMO

Background and purpose: In external beam radiotherapy for non-small cell lung cancer, dose to functioning lung should be minimised to reduce lung morbidity. This study aimed to develop a method for avoiding beam delivery through functional lung and to quantify the possible benefit to the patients. Materials and methods: Twelve patients that were treated as part of a clinical trial of single photon emission computed tomography (SPECT) functional lung avoidance were retrospectively studied. During treatment planning, the dose in the lung was weighted by the relative intensity of the functional image. A single conformal beam was scanned systematically around the planning target volume to find optimum orientations and the resulting map of functional dose variation with gantry and couch angle was used to select five non-coplanar intensity-modulated beams, taking into account directions prohibited due to collision risk. Expected reduction in pneumonitis risk was calculated using a logistic model. Results: The volume of lung irradiated to a functionally weighted dose of 5 Gy was 11.8 % (range 3.5 %-22.0 %) for functional plans, versus 20.9 % (range 4.9 %-33.3 %) for conventional plans (p = 0.002). Mean functionally weighted dose was 4.1 Gy (range 1.3 Gy-7.2 Gy) for functional plans, versus 4.5 Gy (range 1.5 Gy-8.3 Gy) for conventional plans (p = 0.002). Predicted pneumonitis risk was reduced by 4.3 % (range 0.4 %-15.6 %) (p = 0.002). Conclusions: By seeking the optimum non-coplanar beam orientations, it is possible to reduce dose/volume lung parameters by 10% or more, consistently in all patients, regardless of the pattern of lung perfusion. A prediction model indicates that this will improve radiation-associated lung injury.

3.
J Appl Clin Med Phys ; 23(9): e13663, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35699201

RESUMO

PURPOSE: This study aims to develop and validate a simple geometric model of the accelerator head, from which a particle phase space can be calculated for application to fast Monte Carlo dose calculation in real-time adaptive photon radiotherapy. With this objective in view, the study investigates whether the phase space model can facilitate dose calculations which are compatible with those of a commercial treatment planning system, for convenient interoperability. MATERIALS AND METHODS: A dual-source model of the head of a Versa HD accelerator (Elekta AB, Stockholm, Sweden) was created. The model used parameters chosen to be compatible with those of 6-MV flattened and 6-MV flattening filter-free photon beams in the RayStation treatment planning system (RaySearch Laboratories, Stockholm, Sweden). The phase space model was used to calculate a photon phase space for several treatment plans, and the resulting phase space was applied to the Dose Planning Method (DPM) Monte Carlo dose calculation algorithm. Simple fields and intensity-modulated radiation therapy (IMRT) treatment plans for prostate and lung were calculated for benchmarking purposes and compared with the convolution-superposition dose calculation within RayStation. RESULTS: For simple square fields in a water phantom, the calculated dose distribution agrees to within ±2% with that from the commercial treatment planning system, except in the buildup region, where the DPM code does not model the electron contamination. For IMRT plans of prostate and lung, agreements of ±2% and ±6%, respectively, are found, with slightly larger differences in the high dose gradients. CONCLUSIONS: The phase space model presented allows convenient calculation of a phase space for application to Monte Carlo dose calculation, with straightforward translation of beam parameters from the RayStation beam model. This provides a basis on which to develop dose calculation in a real-time adaptive setting.


Assuntos
Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Algoritmos , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação de Ambiente Espacial , Água , Fluxo de Trabalho
4.
Phys Imaging Radiat Oncol ; 22: 36-43, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35493850

RESUMO

Background and purpose: Real-time portal dosimetry compares measured images with predicted images to detect delivery errors as the radiotherapy treatment proceeds. This work aimed to investigate the performance of a recurrent neural network for processing image metrics so as to detect delivery errors as early as possible in the treatment. Materials and methods: Volumetric modulated arc therapy (VMAT) plans of six prostate patients were used to generate sequences of predicted portal images. Errors were introduced into the treatment plans and the modified plans were delivered to a water-equivalent phantom. Four different metrics were used to detect errors. These metrics were applied to a threshold-based method to detect the errors as soon as possible during the delivery, and also to a recurrent neural network consisting of four layers. A leave-two-out approach was used to set thresholds and train the neural network then test the resulting systems. Results: When using a combination of metrics in conjunction with optimal thresholds, the median segment index at which the errors were detected was 107 out of 180. When using the neural network, the median segment index for error detection was 66 out of 180, with no false positives. The neural network reduced the rate of false negative results from 0.36 to 0.24. Conclusions: The recurrent neural network allowed the detection of errors around 30% earlier than when using conventional threshold techniques. By appropriate training of the network, false positive alerts could be prevented, thereby avoiding unnecessary disruption to the patient workflow.

5.
Br J Radiol ; 94(1120): 20201014, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33733813

RESUMO

OBJECTIVES: In real-time portal dosimetry, thresholds are set for several measures of difference between predicted and measured images, and signals larger than those thresholds signify an error. The aim of this work is to investigate the use of an additional composite difference metric (CDM) for earlier detection of errors. METHODS: Portal images were predicted for the volumetric modulated arc therapy plans of six prostate patients. Errors in monitor units, aperture opening, aperture position and path length were deliberately introduced into all 180 segments of the treatment plans, and these plans were delivered to a water-equivalent phantom. Four different metrics, consisting of central axis signal, mean image value and two image difference measures, were used to identify errors, and a CDM was added, consisting of a weighted power sum of the individual metrics. To optimise the weights of the CDM and to evaluate the resulting timeliness of error detection, a leave-pair-out strategy was used. For each combination of four patients, the weights of the CDM were determined by an exhaustive search, and the result was evaluated on the remaining two patients. RESULTS: The median segment index at which the errors were identified was 87 (range 40-130) when using all of the individual metrics separately. Using a CDM as well as multiple separate metrics reduced this to 73 (35-95). The median weighting factors of the four metrics constituting the composite were (0.15, 0.10, 0.15, 0.00). Due to selection of suitable threshold levels, there was only one false positive result in the six patients. CONCLUSION: This study shows that, in conjunction with appropriate error thresholds, use of a CDM is able to identify increased image differences around 20% earlier than the separate measures. ADVANCES IN KNOWLEDGE: This study shows the value of combining difference metrics to allow earlier detection of errors during real-time portal dosimetry for volumetric modulated arc therapy treatment.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Imagens de Fantasmas , Próstata/diagnóstico por imagem , Radiometria , Dosagem Radioterapêutica , Estudos Retrospectivos
6.
Med Phys ; 47(4): 1533-1544, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32048303

RESUMO

PURPOSE: Several studies have demonstrated potential improvements in treatment time through the use of dynamic arcs for delivery of stereotactic body radiation therapy (SBRT) on Cyberknife. However, the delivery system has a finite accuracy, so that potential exists for dosimetric uncertainties. This study estimates the expected dosimetric accuracy of dynamic delivery of SBRT, based on realistic estimates of the uncertainties in delivery parameters. METHODS: Five SBRT patient cases (prostate A - conventional, prostate B - brachytherapy-type, lung, liver, partial left breast) were retrospectively studied. Treatment plans were produced for a fixed arc trajectory using fluence optimization, segmentation, and direct aperture optimization. Dose rate uncertainty was modeled as a smoothly varying random fluctuation of ± 1.0%, ±2.0% or ± 5.0% over a time period of 10, 30 or 60 s. Multileaf collimator uncertainty was modeled as a lag in position of each leaf up to 0.25 or 0.5 mm. Robot pointing error was modeled as a shift of the target location, with the direction of the shift chosen as a random angle with respect to the multileaf collimator and with a random magnitude in the range 0.0-1.0 mm at the delivery nodes and with an additional random magnitude of 0.5-1.0 mm in between the delivery nodes. The impact of the errors was investigated using dose-volume histograms. RESULTS: Uncertainty in dose rate has the effect of varying the total monitor units delivered, which in turn produces a variation in mean dose to the planning target volume. The random sampling of dose rate error produces a distribution of mean doses with a standard deviation proportional to the magnitude of the dose rate uncertainty. A lag in multileaf collimator position of 0.25 or 0.5 mm produces a small impact on the delivered dose. In general, an increase in the PTV mean dose of around 1% is observed. An error in robot pointing of the order of 1 mm produces a small increase in dose inhomogeneity to the planning target volume, sometimes accompanied by an increase in mean dose by around 1%. CONCLUSIONS: Based upon the limited data available on the dose rate stability and geometric accuracy of the Cyberknife system, this study estimates that dynamic arc delivery can be accomplished with sufficient accuracy for clinical application. Dose rate variation produces a change in dose to the planning target volume according to the perturbation of total monitor units delivered, while multileaf collimator lag and robot pointing error typically increase the mean dose to the planning target volume by up to 1%.


Assuntos
Radiocirurgia/métodos , Radiometria , Dosagem Radioterapêutica , Incerteza
7.
Med Phys ; 46(12): 5421-5433, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31587322

RESUMO

PURPOSE: The use of dynamic arcs for delivery of stereotactic body radiation therapy (SBRT) on Cyberknife is investigated, with a view to improving treatment times. This study investigates the required modeling of robot and multileaf collimator (MLC) motion between control points in the trajectory and then uses this to develop an optimization method for treatment planning of a dynamic arc with Cyberknife. The resulting plans are compared in terms of dose-volume histograms and estimated treatment times with those produced by a conventional beam arrangement. METHODS: Five SBRT patient cases (prostate A - conventional, prostate B - brachytherapy-type, lung, liver, and partial left breast) were retrospectively studied. A suitable arc trajectory with control points spaced at 5° was proposed and treatment plans were produced for typical clinical protocols. The optimization consisted of a fluence optimization, segmentation, and direct aperture optimization using a gradient descent method. Dose delivered by the moving MLC was either taken to be the dose delivered discretely at the control points or modeled using effective fluence delivered between control points. The accuracy of calculated dose was assessed by recalculating after optimization using five interpolated beams and 100 interpolated apertures between each optimization control point. The resulting plans were compared using dose-volume histograms and estimated treatment times with those for a conventional Cyberknife beam arrangement. RESULTS: If optimization is performed based on discrete doses delivered at the arc control points, large differences of up to 40% of the prescribed dose are seen when recalculating with interpolation. When the effective fluence between control points is taken into account during optimization, dosimetric differences are <2% for most structures when the plans are recalculated using intermediate nodes, but there are differences of up to 15% peripherally. Treatment plan quality is comparable between the arc trajectory and conventional body path. All plans meet the relevant clinical goals, with the exception of specific structures which overlap with the planning target volume. Median estimated treatment time is 355 s (range 235-672 s) for arc delivery and 675 s (range 554-1025 s) for conventional delivery. CONCLUSIONS: The method of using effective fluence to model MLC motion between control points is sufficiently accurate to provide for accurate inverse planning of dynamic arcs with Cyberknife. The proposed arcing method produces treatment plans with comparable quality to the body path, with reduced estimated treatment delivery time.


Assuntos
Modelos Biológicos , Movimento , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Neoplasias/fisiopatologia , Neoplasias/radioterapia , Dosagem Radioterapêutica
8.
Phys Med Biol ; 64(20): 205009, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31553964

RESUMO

This study investigates the use of a running sum of images during segment-resolved intrafraction portal dosimetry for volumetric modulated arc therapy (VMAT), so as to alert the operator to an error before it becomes irremediable. At the time of treatment planning, predicted portal images were created for each segment of the VMAT arc, and at the time of delivery, intrafraction monitoring software polled the portal imager to read new images as they became available. The predicted and measured images were compared and displayed on a segment basis. In particular, a running sum of images from ten segments (a 'section') was investigated, with mean absolute difference between predicted and measured images being quantified. Images for 13 prostate patients were used to identify appropriate tolerance values for this statistic. Errors in monitor units of 2%-10%, field size of 2-10 mm, field position of 2-10 mm and path length of 10-50 mm were deliberately introduced into the treatment plans and delivered to a water-equivalent phantom and the sensitivity of the method to these errors was investigated. Gross errors were also considered for one case. The patient images show considerable variability from segment to segment, but when using a section of the arc the variability is reduced, so that the maximum value of mean absolute difference between predicted and measured images is reduced to below 12%, after excluding the first 10% of segments. This tolerance level is also found to be applicable for delivery of the plans to a water-equivalent phantom. Using this as a tolerance level for the error plans, a 10% increase in monitor units is detected, 4 mm increase or shift in multileaf collimator settings can be detected, and an air gap of dimensions 40 mm × 50 mm is detected. Gross errors can also be detected instantly after the first 10% of segments. The running difference between predicted and measured images over ten segments is able to identify errors at specific regions of the arc, as well as in the overall treatment.


Assuntos
Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Imagens de Fantasmas , Radiometria/métodos , Dosagem Radioterapêutica , Software
9.
Phys Med Biol ; 64(8): 08NT01, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30808011

RESUMO

Radiotherapy treatment plans using dynamic couch rotation during volumetric modulated arc therapy (DCR-VMAT) reduce the dose to organs at risk (OARs) compared to coplanar VMAT, while maintaining the dose to the planning target volume (PTV). This paper seeks to validate this finding with measurements. DCR-VMAT treatment plans were produced for five patients with primary brain tumours and delivered using a commercial linear accelerator (linac). Dosimetric accuracy was assessed using point dose and radiochromic film measurements. Linac-recorded mechanical errors were assessed by extracting deviations from log files for multi-leaf collimator (MLC), couch, and gantry positions every 20 ms. Dose distributions, reconstructed from every fifth log file sample, were calculated and used to determine deviations from the treatment plans. Median (range) treatment delivery times were 125 s (123-133 s) for DCR-VMAT, compared to 78 s (64-130 s) for coplanar VMAT. Absolute point doses were 0.8% (0.6%-1.7%) higher than prediction. For coronal and sagittal films, respectively, 99.2% (96.7%-100%) and 98.1% (92.9%-99.0%) of pixels above a 20% low dose threshold reported gamma <1 for 3% and 3 mm criteria. Log file analysis showed similar gantry rotation root-mean-square error (RMSE) for VMAT and DCR-VMAT. Couch rotation RMSE for DCR-VMAT was 0.091° (0.086-0.102°). For delivered dose reconstructions, 100% of pixels above a 5% low dose threshold reported gamma <1 for 2% and 2 mm criteria in all cases. DCR-VMAT, for the primary brain tumour cases studied, can be delivered accurately using a commercial linac.


Assuntos
Neoplasias Encefálicas/radioterapia , Posicionamento do Paciente/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Humanos , Órgãos em Risco , Aceleradores de Partículas , Posicionamento do Paciente/normas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Rotação
10.
Br J Radiol ; 92(1097): 20180908, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30694086

RESUMO

This paper gives an overview of recent developments in non-coplanar intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Modern linear accelerators are capable of automating motion around multiple axes, allowing efficient delivery of highly non-coplanar radiotherapy techniques. Novel techniques developed for C-arm and non-standard linac geometries, methods of optimization, and clinical applications are reviewed. The additional degrees of freedom are shown to increase the therapeutic ratio, either through dose escalation to the target or dose reduction to functionally important organs at risk, by multiple research groups. Although significant work is still needed to translate these new non-coplanar radiotherapy techniques into the clinic, clinical implementation should be prioritized. Recent developments in non-coplanar radiotherapy demonstrate that it continues to have a place in modern cancer treatment.


Assuntos
Neoplasias/radioterapia , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Órgãos em Risco , Aceleradores de Partículas , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos
11.
Phys Med Biol ; 64(2): 02TR01, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30524016

RESUMO

Over the last decade, dose calculations which solve the linear Boltzmann transport equations have been introduced into clinical practice and are now in widespread use. However, knowledge in the radiotherapy community concerning the details of their function is limited. This review gives a general description of the linear Boltzmann transport equations as applied to calculation of absorbed dose in clinical radiotherapy. The aim is to elucidate the principles of the method, rather than to describe a particular implementation. The literature on the performance of typical algorithms is then reviewed, in many cases with reference to Monte Carlo simulations. The review is completed with an overview of the emerging applications in the important area of MR-guided radiotherapy.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética/métodos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Humanos , Dosagem Radioterapêutica
12.
J Appl Clin Med Phys ; 20(1): 160-167, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30552738

RESUMO

Current clinical practice is to prescribe to 95% of the planning target volume (PTV) in 4D stereotactic body radiotherapy (SBRT) for lung. Frequently the PTV margin has a very low physical density so that the internal target volume (ITV) receives an unnecessarily high dose. This study investigates the alternative of prescribing to the ITV while including the effects of positional uncertainties. Five patients were retrospectively studied with volumetric modulated arc therapy treatment plans. Five plans were produced for each patient: a static plan prescribed to PTV D95% , three probabilistic plans prescribed to ITV D95% and a static plan re-prescribed to ITV D95% after inverse planning. For the three probabilistic plans, the scatter kernel in the dose calculation was convolved with a spatial uncertainty distribution consisting of either a uniform distribution extending ±5 mm in the three orthogonal directions, a distribution consisting of delta functions at ±5 mm, or a Gaussian distribution with standard deviation 5 mm. Median ITV D50% is 23% higher than the prescribed dose for static planning and only 10% higher than the prescribed dose for prescription to the ITV. The choice of uncertainty distribution has less than 2% effect on the median ITV dose. Re-prescribing a static plan and evaluating with a probabilistic dose calculation results in a median ITV D95% which is 1.5% higher than when planning probabilistically. This study shows that a robust probabilistic approach to planning SBRT lung treatments results in the ITV receiving a dose closer to the intended prescription. The exact form of the uncertainty distribution is not found to be critical.


Assuntos
Algoritmos , Neoplasias Pulmonares/cirurgia , Órgãos em Risco/efeitos da radiação , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Incerteza
13.
Med Eng Phys ; 64: 28-36, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30579786

RESUMO

The Cyberknife system (Accuray Inc., Sunnyvale, CA) enables radiotherapy using stereotactic ablative body radiotherapy (SABR) with a large number of non-coplanar beam orientations. Recently, a multileaf collimator has also been available to allow flexibility in field shaping. This work aims to evaluate the quality of treatment plans obtainable with the multileaf collimator. Specifically, the aim is to find a subset of beam orientations from a predetermined set of candidate directions, such that the treatment quality is maintained but the treatment time is reduced. An evolutionary algorithm is used to successively refine a randomly selected starting set of beam orientations. By using an efficient computational framework, clinically useful solutions can be found in several hours. It is found that 15 beam orientations are able to provide treatment quality which approaches that of the candidate beam set of 110 beam orientations, but with approximately half of the estimated treatment time. Choice of an efficient subset of beam orientations offers the possibility to improve the patient experience and maximise the number of patients treated.


Assuntos
Radiocirurgia/métodos , Humanos , Neoplasias/radioterapia , Controle de Qualidade , Radiocirurgia/instrumentação , Planejamento da Radioterapia Assistida por Computador
14.
Phys Med Biol ; 63(2): 025008, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29165319

RESUMO

In the forward-projection method of portal dosimetry for volumetric modulated arc therapy (VMAT), the integrated signal at the electronic portal imaging device (EPID) is predicted at the time of treatment planning, against which the measured integrated image is compared. In the back-projection method, the measured signal at each gantry angle is back-projected through the patient CT scan to give a measure of total dose to the patient. This study aims to investigate the practical agreement between the two types of EPID dosimetry for prostate radiotherapy. The AutoBeam treatment planning system produced VMAT plans together with corresponding predicted portal images, and a total of 46 sets of gantry-resolved portal images were acquired in 13 patients using an iViewGT portal imager. For the forward-projection method, each acquisition of gantry-resolved images was combined into a single integrated image and compared with the predicted image. For the back-projection method, iViewDose was used to calculate the dose distribution in the patient for comparison with the planned dose. A gamma index for 3% and 3 mm was used for both methods. The results were investigated by delivering the same plans to a phantom and repeating some of the deliveries with deliberately introduced errors. The strongest agreement between forward- and back-projection methods is seen in the isocentric intensity/dose difference, with moderate agreement in the mean gamma. The strongest correlation is observed within a given patient, with less correlation between patients, the latter representing the accuracy of prediction of the two methods. The error study shows that each of the two methods has its own distinct sensitivity to errors, but that overall the response is similar. The forward- and back-projection EPID dosimetry methods show moderate agreement in this series of prostate VMAT patients, indicating that both methods can contribute to the verification of dose delivered to the patient.


Assuntos
Dosimetria in Vivo/métodos , Imagens de Fantasmas , Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Radiometria/métodos , Cintilografia , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
15.
Radiother Oncol ; 121(1): 124-131, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481571

RESUMO

BACKGROUND AND PURPOSE: To evaluate non-coplanar volumetric modulated arc radiotherapy (VMAT) trajectories for organ at risk (OAR) sparing in primary brain tumor radiotherapy. MATERIALS AND METHODS: Fifteen patients were planned using coplanar VMAT and compared against non-coplanar VMAT plans for three trajectory optimization techniques. A geometric heuristic technique (GH) combined beam scoring and Dijkstra's algorithm to minimize the importance-weighted sum of OAR volumes irradiated. Fluence optimization was used to perform a local search around coplanar and GH trajectories, producing fluence-based local search (FBLS) and FBLS+GH trajectories respectively. RESULTS: GH, FBLS, and FBLS+GH trajectories reduced doses to the contralateral globe, optic nerve, hippocampus, temporal lobe, and cochlea. However, FBLS increased dose to the ipsilateral lens, optic nerve and globe. Compared to GH, FBLS+GH increased dose to the ipsilateral temporal lobe and hippocampus, contralateral optics, and the brainstem and body. GH and FBLS+GH trajectories reduced bilateral hippocampi normal tissue complication probability (p=0.028 and p=0.043, respectively). All techniques reduced PTV conformity; GH and FBLS+GH trajectories reduced homogeneity but less so for FBLS+GH. CONCLUSIONS: The geometric heuristic technique best spared OARs and reduced normal tissue complication probability, however incorporating fluence information into non-coplanar trajectory optimization maintained PTV homogeneity.


Assuntos
Neoplasias Encefálicas/radioterapia , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Modelos Biológicos , Órgãos em Risco/diagnóstico por imagem , Probabilidade , Dosagem Radioterapêutica
16.
Radiother Oncol ; 120(2): 320-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27470308

RESUMO

BACKGROUND AND PURPOSE: Delivering selected parts of volumetric modulated arc therapy (VMAT) plans using step-and-shoot intensity modulated radiotherapy (IMRT) beams has the potential to increase plan quality by allowing specific aperture positioning. This study investigates the quality of treatment plans and the accuracy of in vivo portal dosimetry in such a hybrid approach for the case of prostate radiotherapy. MATERIAL AND METHODS: Conformal and limited-modulation VMAT plans were produced, together with five hybrid IMRT/VMAT plans, in which 0%, 25%, 50%, 75% or 100% of the segments were sequenced for IMRT, while the remainder were sequenced for VMAT. Integrated portal images were predicted for the plans. The plans were then delivered as a single hybrid beam using an Elekta Synergy accelerator with Agility head to a water-equivalent phantom and treatment time, isocentric dose and portal images were measured. RESULTS: Increasing the IMRT percentage improves dose uniformity to the planning target volume (p<0.01 for 50% IMRT or more), substantially reduces the volume of rectum irradiated to 65Gy (p=0.02 for 25% IMRT) and increases the monitor units (p<0.001). Delivery time also increases substantially. All plans show accurate delivery of dose and reliable prediction of portal images. CONCLUSIONS: Hybrid IMRT/VMAT can be efficiently planned and delivered as a single beam sequence. Beyond 25% IMRT, the delivery time becomes unacceptably long, with increased risk of intrafraction motion, but 25% IMRT is an attractive compromise. Integrated portal images can be used to perform in vivo dosimetry for this technique.


Assuntos
Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Dosimetria in Vivo , Fígado/efeitos da radiação , Masculino , Posicionamento do Paciente , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/métodos , Reto/efeitos da radiação , Estudos Retrospectivos
17.
Radiother Oncol ; 117(3): 491-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26277856

RESUMO

BACKGROUND AND PURPOSE: The latency of a multileaf collimator (MLC) tracking system used to overcome respiratory motion causes misalignment of the treatment beam with respect to the gross tumour volume, which may result in reduced target coverage. This study investigates the magnitude of this effect. MATERIAL AND METHODS: Simulated superior-inferior breathing motion was used to construct histograms of isocentre offset with respect to the gross tumour volume (GTV) for a variety of tracking latencies. Dose distributions for conformal volumetric modulated arc therapy (VMAT) arcs were then calculated at a range of offsets and summed according to these displacement histograms. The results were verified by delivering the plans to a Delta(4) phantom on a motion platform. RESULTS: In the absence of an internal target margin, a tracking latency of 150 ms reduces the GTV D95% by approximately 2%. With a margin of 2 mm, the same drop in dose occurs for a tracking latency of 450 ms. Lung V(13Gy) is unaffected by a range of latencies. These results are supported by the phantom measurements. CONCLUSIONS: Assuming that internal motion can be modelled by a rigid translation of the patient, MLC tracking of conformal VMAT can be effectively accomplished in the absence of an internal target margin for substantial breathing motion (4 s period and 20 mm peak-peak amplitude) so long as the system latency is less than 150 ms.


Assuntos
Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Imageamento Tridimensional , Neoplasias Pulmonares/patologia , Movimento (Física) , Dosagem Radioterapêutica , Respiração , Estudos Retrospectivos
18.
J Appl Clin Med Phys ; 16(1): 5238, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25679179

RESUMO

For accurate delivery of volumetric-modulated arc therapy (VMAT), the gantry position should be synchronized with the multileaf collimator (MLC) leaf positions and the dose rate. This study, therefore, aims to implement quality control (QC) of VMAT synchronization, with as few arcs as possible and with minimal data handling time, using portal imaging. A steel bar of diameter 12 mm is accurately positioned in the G-T direction, 80 mm laterally from the isocenter. An arc prescription irradiates the bar with a 16 mm × 220 mm field during a complete 360° arc, so as to cast a shadow of the bar onto the portal imager. This results in a sinusoidal sweep of the field and shadow across the portal imager and back. The method is evaluated by simulating gantry position errors of 1°-9° at one control point, dose errors of 2 monitor units to 20 monitor units (MU) at one control point (0.3%-3% overall), and MLC leaf position errors of 1 mm - 6 mm at one control point. Inhomogeneity metrics are defined to characterize the synchronization of all leaves and of individual leaves with respect to the complete set. Typical behavior is also investigated for three models of accelerator. In the absence of simulated errors, the integrated images show uniformity, and with simulated delivery errors, irregular patterns appear. The inhomogeneity metrics increase by 67% due to a 4° gantry position error, 33% due to an 8 MU (1.25%) dose error, and 70% due to a 2 mm MLC leaf position error. The method is more sensitive to errors at gantry angle 90°/270° than at 0°/180° due to the geometry of the test. This method provides fast and effective VMAT QC suitable for inclusion in a monthly accelerator QC program. The test is able to detect errors in the delivery of individual control points, with the possibility of using movie images to further investigate suspicious image features.


Assuntos
Diagnóstico por Imagem , Neoplasias/radioterapia , Aceleradores de Partículas/normas , Garantia da Qualidade dos Cuidados de Saúde/métodos , Controle de Qualidade , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Dosagem Radioterapêutica
19.
Med Phys ; 41(11): 111719, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25370633

RESUMO

PURPOSE: To evaluate the performance of the Elekta Agility multileaf collimator (MLC) for dynamic real-time tumor tracking. METHODS: The authors have developed a new control software which interfaces to the Agility MLC to dynamically program the movement of individual leaves, the dynamic leaf guides (DLGs), and the Y collimators ("jaws") based on the actual target trajectory. A motion platform was used to perform dynamic tracking experiments with sinusoidal trajectories. The actual target positions reported by the motion platform at 20, 30, or 40 Hz were used as shift vectors for the MLC in beams-eye-view. The system latency of the MLC (i.e., the average latency comprising target device reporting latencies and MLC adjustment latency) and the geometric tracking accuracy were extracted from a sequence of MV portal images acquired during irradiation for the following treatment scenarios: leaf-only motion, jaw + leaf motion, and DLG + leaf motion. RESULTS: The portal imager measurements indicated a clear dependence of the system latency on the target position reporting frequency. Deducting the effect of the target frequency, the leaf adjustment latency was measured to be 38 ± 3 ms for a maximum target speed v of 13 mm/s. The jaw + leaf adjustment latency was 53 ± 3 at a similar speed. The system latency at a target position frequency of 30 Hz was in the range of 56-61 ms for the leaves (v ≤ 31 mm/s), 71-78 ms for the jaw + leaf motion (v ≤ 25 mm/s), and 58-72 ms for the DLG + leaf motion (v ≤ 59 mm/s). The tracking accuracy showed a similar dependency on the target position frequency and the maximum target speed. For the leaves, the root-mean-squared error (RMSE) was between 0.6-1.5 mm depending on the maximum target speed. For the jaw + leaf (DLG + leaf) motion, the RMSE was between 0.7-1.5 mm (1.9-3.4 mm). CONCLUSIONS: The authors have measured the latency and geometric accuracy of the Agility MLC, facilitating its future use for clinical tracking applications.


Assuntos
Radioterapia Assistida por Computador/métodos , Movimento (Física) , Imagens de Fantasmas , Software
20.
Med Phys ; 41(2): 021725, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24506616

RESUMO

PURPOSE: Portal dosimetry provides an accurate and convenient means of verifying dose delivered to the patient. A simple method for carrying out portal dosimetry for volumetric modulated arc therapy (VMAT) is described, together with phantom measurements demonstrating the validity of the approach. METHODS: Portal images were predicted by projecting dose in the isocentric plane through to the portal image plane, with exponential attenuation and convolution with a double-Gaussian scatter function. Appropriate parameters for the projection were selected by fitting the calculation model to portal images measured on an iViewGT portal imager (Elekta AB, Stockholm, Sweden) for a variety of phantom thicknesses and field sizes. This model was then used to predict the portal image resulting from each control point of a VMAT arc. Finally, all these control point images were summed to predict the overall integrated portal image for the whole arc. The calculated and measured integrated portal images were compared for three lung and three esophagus plans delivered to a thorax phantom, and three prostate plans delivered to a homogeneous phantom, using a gamma index for 3% and 3 mm. A 0.6 cm(3) ionization chamber was used to verify the planned isocentric dose. The sensitivity of this method to errors in monitor units, field shaping, gantry angle, and phantom position was also evaluated by means of computer simulations. RESULTS: The calculation model for portal dose prediction was able to accurately compute the portal images due to simple square fields delivered to solid water phantoms. The integrated images of VMAT treatments delivered to phantoms were also correctly predicted by the method. The proportion of the images with a gamma index of less than unity was 93.7% ± 3.0% (1SD) and the difference between isocenter dose calculated by the planning system and measured by the ionization chamber was 0.8% ± 1.0%. The method was highly sensitive to errors in monitor units and field shape, but less sensitive to errors in gantry angle or phantom position. CONCLUSIONS: This method of predicting integrated portal images provides a convenient means of verifying dose delivered using VMAT, with minimal image acquisition and data processing requirements.


Assuntos
Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA