Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4219, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244505

RESUMO

Streptococcus pyogenes (Spy) Cas9 has potential as a component of gene therapeutics for incurable diseases. One of its limitations is its large size, which impedes its formulation and delivery in therapeutic applications. Smaller Cas9s are an alternative, but lack robust activity or specificity and frequently recognize longer PAMs. Here, we investigated four uncharacterized, smaller Cas9s and found three employing a "GG" dinucleotide PAM similar to SpyCas9. Protein engineering generated synthetic RNA-guided nucleases (sRGNs) with editing efficiencies and specificities exceeding even SpyCas9 in vitro and in human cell lines on disease-relevant targets. sRGN mRNA lipid nanoparticles displayed manufacturing advantages and high in vivo editing efficiency in the mouse liver. Finally, sRGNs, but not SpyCas9, could be packaged into all-in-one AAV particles with a gRNA and effected robust in vivo editing of non-human primate (NHP) retina photoreceptors. Human gene therapy efforts are expected to benefit from these improved alternatives to existing CRISPR nucleases.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Staphylococcus/enzimologia , Animais , Proteína 9 Associada à CRISPR/isolamento & purificação , Linhagem Celular Tumoral , Dependovirus , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Células HEK293 , Humanos , Macaca fascicularis , Masculino , Camundongos , Parvovirinae/genética , Engenharia de Proteínas , Ribonucleases , Staphylococcus/genética , Especificidade por Substrato , Síndromes de Usher/genética , Síndromes de Usher/terapia , RNA Guia de Sistemas CRISPR-Cas
2.
Front Immunol ; 11: 608802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424861

RESUMO

Inherited defects in MyD88 and IRAK4, two regulators in Toll-like receptor (TLR) signaling, are clinically highly relevant, but still incompletely understood. MyD88- and IRAK4-deficient patients are exceedingly susceptible to a narrow spectrum of pathogens, with ∼50% lethality in the first years of life. To better understand the underlying molecular and cellular characteristics that determine disease progression, we aimed at modeling the cellular response to pathogens in vitro. To this end, we determined the immunophenotype of monocytes and macrophages derived from MyD88- and IRAK4-deficient patients. We recognized that macrophages derived from both patients were particularly poorly activated by streptococci, indicating that both signaling intermediates are essential for the immune response to facultative pathogens. To characterize this defect in more detail, we generated induced pluripotent stem cells (iPSCs) of fibroblasts derived from an MyD88-deficient patient. The underlying genetic defect was corrected using Sleeping Beauty transposon vectors encoding either the long (L) or the short (S) MYD88 isoform, respectively. Macrophages derived from these iPSC lines (iMacs) expressed typical macrophage markers, stably produced either MyD88 isoform, and showed robust phagocytic activity. Notably, iMacs expressing MyD88-L, but not MyD88-S, exhibited similar responses to external stimuli, including cytokine release patterns, as compared to genetically normal iMacs. Thus, the two MyD88 isoforms assume distinct functions in signaling. In conclusion, iPSC technology, in combination with efficient myeloid differentiation protocols, provides a valuable and inexhaustible source of macrophages, which can be used for disease modeling. Moreover, iPSC-derived macrophages may eventually aid in stabilizing MyD88-deficient patients during pyogenic infections.


Assuntos
Fator 88 de Diferenciação Mieloide/metabolismo , Doenças da Imunodeficiência Primária/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Citocinas/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Células Mieloides/metabolismo , Transdução de Sinais/fisiologia
3.
Stem Cell Res ; 23: 95-97, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28925369

RESUMO

Cystic fibrosis (CF) is a monogenetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which affects multiple organs. Human induced pluripotent stem cells (iPSCs) derived from CF patients and the generation of isogeneic gene-corrected control cell lines enable disease modelling, drug discovery or toxicological studies and therefore the development of CF patient-specific therapies. We have previously generated a hiPSC line from a CF patient homozygous for the p.Phe508del mutation. Here we used TALENs and single-stranded oligonucleotides to correct the mutated triplet in our CF-iPSC line.


Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Oligodesoxirribonucleotídeos/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Sequência de Bases , Linhagem Celular , Homozigoto , Humanos , Masculino
4.
PLoS One ; 11(8): e0161072, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27526025

RESUMO

In vitro disease models have enabled insights into the pathophysiology of human disease as well as the functional evaluation of new therapies, such as novel genome engineering strategies. In the context of cystic fibrosis (CF), various cellular disease models have been established in recent years, including organoids based on induced pluripotent stem cell technology that allowed for functional readouts of CFTR activity. Yet, many of these in vitro CF models require complex and expensive culturing protocols that are difficult to implement and may not be amenable for high throughput screens. Here, we show that a simple cellular CF disease model based on the bronchial epithelial ΔF508 cell line CFBE41o- can be used to validate functional CFTR correction. We used an engineered nuclease to target the integration of a super-exon, encompassing the sequences of CFTR exons 11 to 27, into exon 11 and re-activated endogenous CFTR expression by treating CFBE41o- cells with a demethylating agent. We demonstrate that the integration of this super-exon resulted in expression of a corrected mRNA from the endogenous CFTR promoter and used short-circuit current measurements in Ussing chambers to corroborate restored ion transport of the repaired CFTR channels. In conclusion, this study proves that the targeted integration of a large super-exon in CFTR exon 11 leads to functional correction of CFTR, suggesting that this strategy can be used to functionally correct all CFTR mutations located downstream of the 5' end of exon 11.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/patologia , Éxons/genética , Edição de Genes/métodos , Loci Gênicos/genética , Sequência de Bases , Linhagem Celular , Fibrose Cística/genética , DNA Complementar/genética , Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Células Epiteliais/metabolismo , Genótipo , Humanos , Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Dedos de Zinco
5.
Hum Gene Ther ; 23(3): 321-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21980922

RESUMO

Zinc-finger nucleases (ZFNs) have become a valuable tool for targeted genome engineering. Based on the enzyme's ability to create a site-specific DNA double-strand break, ZFNs promote genome editing by activating the cellular DNA damage response, including homology-directed repair (HDR) and nonhomologous end-joining. The goal of this study was (i) to demonstrate the versatility of combining the ZFN technology with a vector platform based on adeno-associated virus (AAV), and (ii) to assess the toxicity evoked by this platform. To this end, human cell lines that harbor enhanced green fluorescence protein (EGFP) reporters were generated to easily quantify the frequencies of gene deletion, gene disruption, and gene correction. We demonstrated that ZFN-encoding AAV expression vectors can be employed to induce large chromosomal deletions or to disrupt genes in up to 32% of transduced cells. In combination with AAV vectors that served as HDR donors, the AAV-ZFN platform was utilized to correct a mutation in EGFP in up to 6% of cells. Genome editing on the DNA level was confirmed by genotyping. Although cell cycle profiling revealed a modest G2/M arrest at high AAV-ZFN vector doses, platform-induced apoptosis could not be detected. In conclusion, the combined AAV-ZFN vector technology is a useful tool to edit the human genome with high efficiency. Because AAV vectors can transduce many cell types relevant for gene therapy, the ex vivo and in vivo delivery of ZFNs via AAV vectors will be of great interest for the treatment of inherited disorders.


Assuntos
Dependovirus/genética , Endonucleases/genética , Genoma Humano , Endonucleases/metabolismo , Vetores Genéticos , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mutação , Dedos de Zinco
6.
J Cell Biol ; 178(3): 503-16, 2007 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-17664338

RESUMO

Neuronal differentiation involves the formation and extension of neuronal processes. We have identified a novel regulator of neurite formation and extension, the neurite outgrowth multiadaptor, NOMA-GAP, which belongs to a new family of multiadaptor proteins with RhoGAP activity. We show that NOMA-GAP is essential for NGF-stimulated neuronal differentiation and for the regulation of the ERK5 MAP kinase and the Cdc42 signaling pathways downstream of NGF. NOMA-GAP binds directly to the NGF receptor, TrkA, and becomes tyrosine phosphorylated upon receptor activation, thus enabling recruitment and activation of the tyrosine phosphatase SHP2. Recruitment of SHP2 is required for the stimulation of neuronal process extension and for sustained activation of ERK5 downstream of NOMA-GAP. In addition, we show that NOMA-GAP promotes neurite outgrowth by tempering activation of the Cdc42/PAK signaling pathway in response to NGF. NOMA-GAP, through its dual function as a multiadaptor and RhoGAP protein, thus plays an essential role downstream of NGF in promoting neurite outgrowth and extension.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Neuritos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Ativação Enzimática , Proteínas Ativadoras de GTPase/genética , Humanos , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Células NIH 3T3 , Fator de Crescimento Neural/metabolismo , Neuritos/ultraestrutura , Células PC12 , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Proteína cdc42 de Ligação ao GTP/genética , Quinases Ativadas por p21/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA