Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38367914

RESUMO

PURPOSE: Targeted radiopharmaceutical therapy (RPT) in combination with external beam radiation therapy (EBRT) shows promise as a method to increase tumor control and mitigate potential high-grade toxicities associated with re-treatment for patients with recurrent head and neck cancer. This work establishes a patient-specific dosimetry framework that combines Monte Carlo-based dosimetry from the 2 radiation modalities at the voxel level using deformable image registration (DIR) and radiobiological constructs for patients enrolled in a phase 1 clinical trial combining EBRT and RPT. METHODS AND MATERIALS: Serial single-photon emission computed tomography (SPECT)/computed tomography (CT) patient scans were performed at approximately 24, 48, 72, and 168 hours postinjection of 577.2 MBq/m2 (15.6 mCi/m2) CLR 131, an iodine 131-containing RPT agent. Using RayStation, clinical EBRT treatment plans were created with a treatment planning CT (TPCT). SPECT/CT images were deformably registered to the TPCT using the Elastix DIR module in 3D Slicer software and assessed by measuring mean activity concentrations and absorbed doses. Monte Carlo EBRT dosimetry was computed using EGSnrc. RPT dosimetry was conducted using RAPID, a GEANT4-based RPT dosimetry platform. Radiobiological metrics (biologically effective dose and equivalent dose in 2-Gy fractions) were used to combine the 2 radiation modalities. RESULTS: The DIR method provided good agreement for the activity concentrations and calculated absorbed dose in the tumor volumes for the SPECT/CT and TPCT images, with a maximum mean absorbed dose difference of -11.2%. Based on the RPT absorbed dose calculations, 2 to 4 EBRT fractions were removed from patient EBRT treatments. For the combined treatment, the absorbed dose to target volumes ranged from 57.14 to 75.02 Gy. When partial volume corrections were included, the mean equivalent dose in 2-Gy fractions to the planning target volume from EBRT + RPT differed -3.11% to 1.40% compared with EBRT alone. CONCLUSIONS: This work demonstrates the clinical feasibility of performing combined EBRT + RPT dosimetry on TPCT scans. Dosimetry guides treatment decisions for EBRT, and this work provides a bridge for the same paradigm to be implemented within the rapidly emerging clinical RPT space.

3.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37513891

RESUMO

BACKGROUND: Osteosarcoma (OS) represents the most common primary bone tumor in humans and in companion dogs, being practically phenotypically identical. There is a need for effective treatments to extend the survival of patients with OS. Here, we examine the dosimetry in beagle dogs and cross-reactivity with human tissues of a novel human antibody, IF3, that targets the insulin growth factor receptor type 2 (IGF2R), which is overexpressed on OS cells, making it a candidate for radioimmunotherapy of OS. METHODS: [89Zr]Zr-DFO-IF3 was injected into three healthy beagle dogs. PET/CT was conducted at 4, 24, 48, and 72 h. RAPID analysis was used to determine the dosimetry of [177Lu]Lu-CHXA"-IF3 for a clinical trial in companion dogs with OS. IF3 antibody was biotinylated, and a multitude of human tissues were assessed with immunohistochemistry. RESULTS: PET/CT revealed that only the liver, bone marrow, and adrenal glands had high uptake. Clearance was initially through renal and hepatobiliary excretion in the first 72 h followed by primarily physical decay. RAPID analysis showed bone marrow to be the dose-limiting organ with a therapeutic range for 177Lu calculated to be 0.487-0.583 GBq. Immunohistochemistry demonstrated the absence of IGF2R expression on the surface of healthy human cells, thus suggesting that radioimmunotherapy with [177Lu]Lu-CHXA"-IF3 will be well tolerated. CONCLUSIONS: Image-based dosimetry has defined a safe therapeutic range for canine clinical trials, while immunohistochemistry has suggested that the antibody will not cross-react with healthy human tissues.

4.
Semin Radiat Oncol ; 33(3): 317-326, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37331786

RESUMO

Radiopharmaceutical therapy (RPT) is an invigorated form of cancer therapy that systemically delivers targeted radioactive drugs to cancer cells. Theranostics is a type of RPT that utilizes imaging, either of the RPT drug directly or a companion diagnostic, to inform whether a patient will benefit from the treatment. Given the ability to image the drug onboard theranostic treatments also lends itself readily to patient-specific dosimetry, which is a physics-based process that determines the overall absorbed dose burden to healthy organs and tissues and tumors in patients. While companion diagnostics identify who will benefit from RPT treatments, dosimetry determines how much activity these beneficiaries can receive to maximize therapeutic efficacy. Clinical data is starting to accrue suggesting tremendous benefits when dosimetry is performed for RPT patients. RPT dosimetry, which was once performed by florid and often inaccurate workflows, can now be performed more efficiently and accurately with FDA-cleared dosimetry software. Therefore, there is no better time for the field of oncology to adopt this form of personalize medicine to improve outcomes for cancer patients.


Assuntos
Medicina de Precisão , Radiometria , Compostos Radiofarmacêuticos , Humanos , Radiometria/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Planejamento da Radioterapia Assistida por Computador
5.
Cancer Biother Radiopharm ; 38(7): 458-467, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37022739

RESUMO

Background: Delivery of radiotherapeutic dose to recurrent head and neck cancer (HNC) is primarily limited by locoregional toxicity in conventional radiotherapy. As such, HNC patients stand to benefit from the conformal targeting of primary and remnant disease achievable with radiopharmaceutical therapies. In this study, the authors investigated the tumor targeting capacity of 131I-CLR1404 (iopofosine I-131) in various HNC xenograft mouse models and the impact of partial volume correction (PVC) on theranostic dosimetry based on 124I-CLR1404 (CLR 124) positron emission tomography (PET)/computed tomography (CT) imaging. Methods: Mice bearing flank tumor xenograft models of HNC (six murine cell line and six human patient derived) were intravenously administered 6.5-9.1 MBq of CLR 124 and imaged five times over the course of 6 d using microPET/CT. In vivo tumor uptake of CLR 124 was assessed and PVC for 124I was applied using a novel preclinical phantom. Using subject-specific theranostic dosimetry estimations for iopofosine I-131 based on CLR 124 imaging, a discrete radiation dose escalation study (2, 4, 6, and 8 Gy) was performed to evaluate tumor growth response to iopofosine I-131 relative to a single fraction of external beam radiation therapy (6 Gy). Results: PET imaging demonstrated consistent tumor selective uptake and retention of CLR 124 across all HNC xenograft models. Peak uptake of 4.4% ± 0.8% and 4.2% ± 0.4% was observed in squamous cell carcinoma-22B and UW-13, respectively. PVC application increased uptake measures by 47%-188% and reduced absolute differences between in vivo and ex vivo uptake measurements from 3.3% to 1.0 percent injected activity per gram. Tumor dosimetry averaged over all HNC models was 0.85 ± 0.27 Gy/MBq (1.58 ± 0.46 Gy/MBq with PVC). Therapeutic iopofosine I-131 studies demonstrated a variable, but linear relationship between iopofosine I-131 radiation dose and tumor growth delay (p < 0.05). Conclusions: Iopofosine I-131 demonstrated tumoricidal capacity in preclinical HNC tumor models and the theranostic pairing with CLR 124 presents a promising new treatment approach for personalizing administration of iopofosine I-131.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioisótopos do Iodo , Humanos , Animais , Camundongos , Radioisótopos do Iodo/uso terapêutico , Medicina de Precisão , Xenoenxertos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Modelos Animais de Doenças
6.
Biomed Phys Eng Express ; 9(4)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37084718

RESUMO

Voxel-level dosimetry based on nuclear medicine images offers patient-specific personalization of radiopharmaceutical therapy (RPT) treatments. Clinical evidence is emerging demonstrating improvements in treatment precision in patients when voxel-level dosimetry is used compared to MIRD. Voxel-level dosimetry requires absolute quantification of activity concentrations in the patient, but images from SPECT/CT scanners are not quantitative and require calibration using nuclear medicine phantoms. While phantom studies can validate a scanner's ability to recover activity concentrations, these studies provide only a surrogate for the true metric of interest: absorbed doses. Measurements using thermoluminescent dosimeters (TLDs) are a versatile and accurate method of measuring absorbed dose. In this work, a TLD probe was manufactured that can fit into currently available nuclear medicine phantoms for the measurement of absorbed dose of RPT agents. Next, 748 MBq of I-131 was administered to a 16 ml hollow source sphere placed in a 6.4 L Jaszczak phantom in addition to six TLD probes, each holding 4 TLD-100 1 × 1 × 1 mm TLD-100 (LiF:Mg,Ti) microcubes. The phantom then underwent a SPECT/CT scan in accordance with a standard SPECT/CT imaging protocol for I-131. The SPECT/CT images were then input into a Monte Carlo based RPT dosimetry platform named RAPID and a three dimensional dose distribution in the phantom was estimated. Additionally, a GEANT4 benchmarking scenario (denoted 'idealized') was created using a stylized representation of the phantom. There was good agreement for all six probes, the differences between measurement and RAPID ranged between -5.5% and 0.9%. The difference between the measured and the idealized GEANT4 scenario was calculated and ranged from -4.3% and -20.5%. This work demonstrates good agreement between TLD measurements and RAPID. In addition, it introduces a novel TLD probe that can be easily introduced into clinical nuclear medicine workflows to provide QA of image-based dosimetry for RPT treatments.


Assuntos
Radioisótopos do Iodo , Compostos Radiofarmacêuticos , Humanos , Fluxo de Trabalho , Radiometria/métodos
7.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639155

RESUMO

BACKGROUND: The antitumor effects of external beam radiation therapy (EBRT) are mediated, in part, by an immune response. We have reported that a single fraction of 12 Gy EBRT combined with intratumoral anti-GD2 hu14.18-IL2 immunocytokine (IC) generates an effective in situ vaccine (ISV) against GD2-positive murine tumors. This ISV is effective in eradicating single tumors with sustained immune memory; however, it does not generate an adequate abscopal response against macroscopic distant tumors. Given the immune-stimulatory capacity of radiation therapy (RT), we hypothesized that delivering RT to all sites of disease would augment systemic antitumor responses to ISV. METHODS: We used a syngeneic B78 murine melanoma model consisting of a 'primary' flank tumor and a contralateral smaller 'secondary' flank tumor, treated with 12 Gy EBRT and intratumoral IC immunotherapy to the primary and additional EBRT to the secondary tumor. As a means of delivering RT to all sites of disease, both known and occult, we also used a novel alkylphosphocholine analog, NM600, conjugated to 90Y as a targeted radionuclide therapy (TRT). Tumor growth, overall survival, and cause of death were measured. Flow cytometry was used to evaluate immune population changes in both tumors. RESULTS: Abscopal effects of local ISV were amplified by delivering as little as 2-6 Gy of EBRT to the secondary tumor. When the primary tumor ISV regimen was delivered in mice receiving 12 Gy EBRT to the secondary tumor, we observed improved overall survival and more disease-free mice with immune memory compared with either ISV or 12 Gy EBRT alone. Similarly, TRT combined with ISV resulted in improved overall survival and a trend towards reduced tumor growth rates when compared with either treatment alone. Using flow cytometry, we identified an influx of CD8+ T cells with a less exhausted phenotype in both the ISV-targeted primary and the distant secondary tumor following the combination of secondary tumor EBRT or TRT with primary tumor ISV. CONCLUSIONS: We report a novel use for low-dose RT, not as a direct antitumor modality but as an immunomodulator capable of driving and expanding antitumor immunity against metastatic tumor sites following ISV.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Camundongos , Animais , Imunoterapia/métodos , Memória Imunológica , Vacinação
8.
Int J Comput Assist Radiol Surg ; 18(8): 1501-1509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36648702

RESUMO

PURPOSE: Ultrasound is often the preferred modality for image-guided therapy or treatment in organs such as liver due to real-time imaging capabilities. However, the reduced conspicuity of tumors in ultrasound images adversely impacts the precision and accuracy of treatment delivery. This problem is compounded by deformable motion due to breathing and other physiological activity. This creates the need for a fusion method to align interventional US with pre-interventional modalities that provide superior soft-tissue contrast (e.g., MRI) to accurately target a structure-of-interest and compensate for liver motion. METHOD: In this work, we developed a hybrid deformable fusion method to align 3D pre-interventional MRI and 3D interventional US volumes to target the structures-of-interest in liver accurately in real-time. The deformable multimodal fusion method involved an offline alignment of a pre-intervention MRI with a pre-intervention US volume using a traditional registration method, followed by real-time prediction of deformation using a trained deep-learning model between interventional US volumes across different respiratory states. This framework enables motion-compensated MRI-US image fusion in real-time for image-guided treatment. RESULTS: The proposed hybrid deformable registration method was evaluated on three healthy volunteers across the pre-intervention MRI and 20 US volume pairs in the free-breathing respiratory cycle. The mean Euclidean landmark distance of three homologous targets in all three volunteers was less than 3 mm for percutaneous liver procedures. CONCLUSIONS: Preliminary results show that clinically acceptable registration accuracies for near real-time, deformable MRI-US fusion can be achieved by our proposed hybrid approach. The proposed combination of traditional and deep-learning deformable registration techniques is thus a promising approach for motion-compensated MRI-US fusion to improve targeting in image-guided liver interventions.


Assuntos
Fígado , Ultrassonografia de Intervenção , Humanos , Movimento (Física) , Fígado/diagnóstico por imagem , Fígado/cirurgia , Ultrassonografia/métodos , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Algoritmos
9.
Cancers (Basel) ; 16(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38201618

RESUMO

BACKGROUND AND PURPOSE: Chimeric antigen receptor (CAR) T cells have been relatively ineffective against solid tumors. Low-dose radiation which can be delivered to multiple sites of metastases by targeted radionuclide therapy (TRT) can elicit immunostimulatory effects. However, TRT has never been combined with CAR T cells against solid tumors in a clinical setting. This study investigated the effects of radiation delivered by Lutetium-177 (177Lu) and Actinium-225 (225Ac) on the viability and effector function of CAR T cells in vitro to evaluate the feasibility of such therapeutic combinations. After the irradiation of anti-GD2 CAR T cells with various doses of radiation delivered by 177Lu or 225Ac, their viability and cytotoxic activity against GD2-expressing human CHLA-20 neuroblastoma and melanoma M21 cells were determined by flow cytometry. The expression of the exhaustion marker PD-1, activation marker CD69 and the activating receptor NKG2D was measured on the irradiated anti-GD2 CAR T cells. Both 177Lu and 225Ac displayed a dose-dependent toxicity on anti-GD2 CAR T cells. However, radiation enhanced the cytotoxic activity of these CAR T cells against CHLA-20 and M21 irrespective of the dose tested and the type of radionuclide. No significant changes in the expression of PD-1, CD69 and NKG2D was noted on the CAR T cells following irradiation. Given a lower CAR T cell viability at equal doses and an enhancement of cytotoxic activity irrespective of the radionuclide type, 177Lu-based TRT may be preferred over 225Ac-based TRT when evaluating a potential synergism between these therapies in vivo against solid tumors.

10.
Front Oncol ; 12: 879167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992845

RESUMO

3DCRT and IMRT out-of-field doses in pediatric patients were compared using Monte Carlo simulations with treatment planning system calculations and measurements. Purpose: Out-of-field doses are given to healthy tissues, which may allow the development of second tumors. The use of IMRT in pediatric patients has been discussed, as it leads to a "bath" of low doses to large volumes of out-of-field organs and tissues. This study aims to compare out-of-field doses in pediatric patients comparing IMRT and 3DCRT techniques using measurements, Monte Carlo (MC) simulations, and treatment planning system (TPS) calculations. Materials and methods: A total dose of 54 Gy was prescribed to a PTV in the brain of a pediatric anthropomorphic phantom, for both techniques. To assess the out-of-field organ doses for both techniques, two treatment plans were performed with the 3DCRT and IMRT techniques in TPS. Measurements were carried out in a LINAC using a pediatric anthropomorphic phantom and thermoluminescent dosimeters to recreate the treatment plans, previously performed in the TPS. A computational model of a LINAC, the associated multileaf collimators, and a voxelized pediatric phantom implemented in the Monte Carlo N-Particle 6.1 computer program were also used to perform MC simulations of the out-of-field organ doses, for both techniques. Results: The results obtained by measurements and MC simulations indicate a significant increase in dose using the IMRT technique when compared to the 3DCRT technique. More specifically, measurements show higher doses with IMRT, namely, in right eye (13,041 vs. 593 mGy), left eye (6,525 vs. 475 mGy), thyroid (79 vs. 70 mGy), right lung (37 vs. 28 mGy), left lung (27 vs. 20 mGy), and heart (31 vs. 25 mGy). The obtained results indicate that out-of-field doses can be seriously underestimated by TPS. Discussion: This study presents, for the first time, out-of-field dose measurements in a realistic scenario and calculations for IMRT, centered on a voxelized pediatric phantom and an MC model of a medical LINAC, including MLC with log file-based simulations. The results pinpoint significant discrepancies in out-of-field doses for the two techniques and are a cause of concern because TPS calculations cannot accurately predict such doses. The obtained doses may presumably increase the risk of development of second tumors.

11.
J Immunother Cancer ; 10(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002185

RESUMO

BACKGROUND: Systemic radiation treatments that preferentially irradiate cancer cells over normal tissue, known as targeted radionuclide therapy (TRT), have shown significant potential for treating metastatic prostate cancer. Preclinical studies have demonstrated the ability of external beam radiation therapy (EBRT) to sensitize tumors to T cell checkpoint blockade. Combining TRT approaches with immunotherapy may be more feasible than combining with EBRT to treat widely metastatic disease, however the effects of TRT on the prostate tumor microenvironment alone and in combinfation with checkpoint blockade have not yet been studied. METHODS: C57BL/6 mice-bearing TRAMP-C1 tumors and FVB/NJ mice-bearing Myc-CaP tumors were treated with a single intravenous administration of either low-dose or high-dose 90Y-NM600 TRT, and with or without anti-PD-1 therapy. Groups of mice were followed for tumor growth while others were used for tissue collection and immunophenotyping of the tumors via flow cytometry. RESULTS: 90Y-NM600 TRT was safe at doses that elicited a moderate antitumor response. TRT had multiple effects on the tumor microenvironment including increasing CD8 +T cell infiltration, increasing checkpoint molecule expression on CD8 +T cells, and increasing PD-L1 expression on myeloid cells. However, PD-1 blockade with TRT treatment did not improve antitumor efficacy. Tregs remained functional up to 1 week following TRT, but CD8 +T cells were not, and the suppressive function of Tregs increased when anti-PD-1 was present in in vitro studies. The combination of anti-PD-1 and TRT was only effective in vivo when Tregs were depleted. CONCLUSIONS: Our data suggest that the combination of 90Y-NM600 TRT and PD-1 blockade therapy is ineffective in these prostate cancer models due to the activating effect of anti-PD-1 on Tregs. This finding underscores the importance of thorough understanding of the effects of TRT and immunotherapy combinations on the tumor immune microenvironment prior to clinical investigation.


Assuntos
Neoplasias da Próstata , Linfócitos T Reguladores , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Radioisótopos/farmacologia , Radioisótopos/uso terapêutico , Microambiente Tumoral
12.
Med Phys ; 49(8): 5491-5503, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35607296

RESUMO

PURPOSE: Approximately 50% of head and neck cancer (HNC) patients will experience loco-regional disease recurrence following initial courses of therapy. Retreatment with external beam radiotherapy (EBRT) is technically challenging and may be associated with a significant risk of irreversible damage to normal tissues. Radiopharmaceutical therapy (RPT) is a potential method to treat recurrent HNC in conjunction with EBRT. Phantoms are used to calibrate and add quantification to nuclear medicine images, and anthropomorphic phantoms can account for both the geometrical and material composition of the head and neck. In this study, we present the creation of an anthropomorphic, head and neck, nuclear medicine phantom, and its characterization for the validation of a Monte Carlo, SPECT image-based, 131 I RPT dosimetry workflow. METHODS: 3D-printing techniques were used to create the anthropomorphic phantom from a patient CT dataset. Three 131 I SPECT/CT imaging studies were performed using a homogeneous, Jaszczak, and an anthropomorphic phantom to quantify the SPECT images using a GE Optima NM/CT 640 with a high energy general purpose collimator. The impact of collimator detector response (CDR) modeling and volume-based partial volume corrections (PVCs) upon the absorbed dose was calculated using an image-based, Geant4 Monte Carlo RPT dosimetry workflow and compared against a ground truth scenario. Finally, uncertainties were quantified in accordance with recent EANM guidelines. RESULTS: The 3D-printed anthropomorphic phantom was an accurate re-creation of patient anatomy including bone. The extrapolated Jaszczak recovery coefficients were greater than that of the 3D-printed insert (∼22.8 ml) for both the CDR and non-CDR cases (with CDR: 0.536 vs. 0.493, non-CDR: 0.445 vs. 0.426, respectively). Utilizing Jaszczak phantom PVCs, the absorbed dose was underpredicted by 0.7% and 4.9% without and with CDR, respectively. Utilizing anthropomorphic phantom recovery coefficient overpredicted the absorbed dose by 3% both with and without CDR. All dosimetry scenarios that incorporated PVC were within the calculated uncertainty of the activity. The uncertainties in the cumulative activity ranged from 23.6% to 106.4% for Jaszczak spheres ranging in volume from 0.5 to 16 ml. CONCLUSION: The accuracy of Monte Carlo-based dosimetry for 131 I RPT in HNC was validated with an anthropomorphic phantom. In this study, it was found that Jaszczak-based PVCs were sufficient. Future applications of the phantom could involve 3D printing and characterizing patient-specific volumes for more personalized RPT dosimetry estimates.


Assuntos
Radiometria , Compostos Radiofarmacêuticos , Humanos , Radioisótopos do Iodo , Método de Monte Carlo , Imagens de Fantasmas , Impressão Tridimensional , Radiometria/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Fluxo de Trabalho
13.
J Appl Clin Med Phys ; 23(8): e13646, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35596533

RESUMO

PURPOSE: We investigated the hypothesis that the transmission function of rounded end linearly traveling multileaf collimators (MLCs) is constant with position. This assumption is made by some MLC models used in clinical treatment planning systems (TPSs) and in the Varian MLC calibration convention. If not constant, this would have implications for treatment plan QA results. METHODS: A two-dimensional ray-tracing tool to generate transmission curves as a function of leaf position was created and validated. The curves for clinically available leaf tip positions (-20 to 20 cm) were analyzed to determine the location of the beam edge (half-attenuation X-ray [XR]) location, the beam edge broadening (BEB, 80%-20% width), as well as the leaf tip zone width. More generalized scenarios were then simulated to elucidate trends as a function of leaf tip radius. RESULTS: In the analysis of the Varian high-definition MLC, two regions were identified: a quasi-static inner region centered about central axis (CAX), and an outer one, in which large deviations were observed. A phenomenon was identified where the half-attenuation ray position, relative to that of the tip or tangential ray, increases dramatically at definitive points from CAX. Similar behavior is seen for BEB. An analysis shows that as the leaf radius parameter value is made smaller, the size of the quasi-static region is greater (and vice versa). CONCLUSION: The MLC transmission curve properties determined by this study have implications both for MLC position calibrations and modeling within TPSs. Two-dimensional ray tracing can be utilized to identify where simple behaviors hold, and where they deviate. These results can help clinical physicists engage with vendors to improve MLC models, subsequent fluence calculations, and hence dose calculation accuracy.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Calibragem , Simulação por Computador , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
14.
Int J Radiat Oncol Biol Phys ; 113(4): 719-726, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35367328

RESUMO

In 2017, the American Society for Radiation Oncology (ASTRO) board of directors prioritized radiopharmaceutical therapy (RPT) as a leading area for new therapeutic development, and the ASTRO RPT workgroup was created. Herein, the workgroup has developed a framework for RPT curriculum development upon which education leaders can build to integrate this modality into radiation oncology resident education. Through this effort, the workgroup aims to provide a guide to ensure robust training in an emerging therapeutic area within the context of existing radiation oncology training in radiation biology, medical physics, and clinical radiation oncology. The framework first determines the core RPT knowledge required to select patients, prescribe, safely administer, and manage related adverse events. Then, it defines the most important topics for preparing residents for clinical RPT planning and delivery. This framework is designed as a tool to supplement the current training that exists for radiation oncology residents. The final document was approved by the ASTRO board of directors in the fall of 2021.


Assuntos
Internato e Residência , Radioterapia (Especialidade) , Currículo , Humanos , Radioterapia (Especialidade)/educação , Radiobiologia/educação , Compostos Radiofarmacêuticos/uso terapêutico , Sociedades Médicas , Estados Unidos
15.
PLoS One ; 16(8): e0255798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34383787

RESUMO

RATIONALE: Murine syngeneic tumor models have revealed efficacious systemic antitumor responses following primary tumor in situ vaccination combined with targeted radionuclide therapy to secondary or metastatic tumors. Here we present studies on the safety and feasibility of this approach in a relevant translational companion dog model (n = 17 dogs) with advanced cancer. METHODS: The three component of the combination immuno-radiotherapy approach were employed either separately or in combination in companion dogs with advanced stage cancer. In situ vaccination was achieved through the administration of hypofractionated external beam radiotherapy and intratumoral hu14.18-IL2 fusion immunocytokine injections to the index tumor. In situ vaccination was subsequently combined with targeted radionuclide therapy using a theranostic pairing of IV 86Y-NM600 (for PET imaging and subject-specific dosimetry) and IV 90Y-NM600 (therapeutic radionuclide) prescribed to deliver an immunomodulatory 2 Gy dose to all metastatic sites in companion dogs with metastatic melanoma or osteosarcoma. In a subset of dogs, immunologic parameters preliminarily assessed. RESULTS: The components of the immuno-radiotherapy combination were well tolerated either alone or in combination, resulting in only transient low grade (1 or 2) adverse events with no dose-limiting events observed. In subject-specific dosimetry analyses, we observed 86Y-NM600 tumor:bone marrow absorbed-dose differential uptakes ≥2 in 4 of 5 dogs receiving the combination, which allowed subsequent safe delivery of at least 2 Gy 90Y-NM600 TRT to tumors. NanoString gene expression profiling and immunohistochemistry from pre- and post-treatment biopsy specimens provide evidence of tumor microenvironment immunomodulation by 90Y-NM600 TRT. CONCLUSIONS: The combination of external beam radiotherapy, intratumoral immunocytokine, and targeted radionuclide immuno-radiotherapy known to have activity against syngeneic melanoma in murine models is feasible and well tolerated in companion dogs with advanced stage, spontaneously arising melanoma or osteosarcoma and has immunomodulatory potential. Further studies evaluating the dose-dependent immunomodulatory effects of this immuno-radiotherapy combination are currently ongoing.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Interleucina-2/uso terapêutico , Melanoma/terapia , Osteossarcoma/terapia , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Anticorpos Monoclonais/efeitos adversos , Medula Óssea/química , Medula Óssea/metabolismo , Medula Óssea/patologia , Terapia Combinada , Cães , Estudos de Viabilidade , Feminino , Expressão Gênica , Interleucina-2/efeitos adversos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Melanoma/imunologia , Melanoma/patologia , Melanoma/veterinária , Osteossarcoma/imunologia , Osteossarcoma/veterinária , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Radiofarmacêuticos/química , Vacinação , Radioisótopos de Ítrio/química
16.
Sci Transl Med ; 13(602)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261797

RESUMO

Molecular and cellular effects of radiotherapy on tumor microenvironment (TME) can help prime and propagate antitumor immunity. We hypothesized that delivering radiation to all tumor sites could augment response to immunotherapies. We tested an approach to enhance response to immune checkpoint inhibitors (ICIs) by using targeted radionuclide therapy (TRT) to deliver radiation semiselectively to tumors. NM600, an alkylphosphocholine analog that preferentially accumulates in most tumor types, chelates a radioisotope and semiselectively delivers it to the TME for therapeutic or diagnostic applications. Using serial 86Y-NM600 positron emission tomography (PET) imaging, we estimated the dosimetry of 90Y-NM600 in immunologically cold syngeneic murine models that do not respond to ICIs alone. We observed strong therapeutic efficacy and reported optimal dose (2.5 to 5 gray) and sequence for 90Y-NM600 in combination with ICIs. After combined treatment, 45 to 66% of mice exhibited complete response and tumor-specific T cell memory, compared to 0% with 90Y-NM600 or ICI alone. This required expression of STING in tumor cells. Combined TRT and ICI activated production of proinflammatory cytokines in the TME, promoted tumor infiltration by and clonal expansion of CD8+ T cells, and reduced metastases. In mice bearing multiple tumors, combining TRT with moderate-dose (12 gray) external beam radiotherapy (EBRT) targeting a single tumor augmented response to ICIs compared to combination of ICIs with either TRT or EBRT alone. The safety of TRT was confirmed in a companion canine study. Low-dose TRT represents a translatable approach to promote response to ICIs for many tumor types, regardless of location.


Assuntos
Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Animais , Linhagem Celular Tumoral , Cães , Imunoterapia , Camundongos , Radioisótopos , Proteína Tumoral 1 Controlada por Tradução
17.
Phys Med ; 88: 104-110, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34218199

RESUMO

PURPOSE: Respiration-induced tumor or organ positional changes can impact the accuracy of external beam radiotherapy. Motion management strategies are used to account for these changes during treatment. The authors report on the development, testing, and first-in-human evaluation of an electronic 4D (e4D) MR-compatible ultrasound probe that was designed for hands-free operation in a MR and linear accelerator (LINAC) environment. METHODS: Ultrasound components were evaluated for MR compatibility. Electromagnetic interference (EMI) shielding was used to enclose the entire probe and a factory-fabricated cable shielded with copper braids was integrated into the probe. A series of simultaneous ultrasound and MR scans were acquired and analyzed in five healthy volunteers. RESULTS: The ultrasound probe led to minor susceptibility artifacts in the MR images immediately proximal to the ultrasound probe at a depth of <10 mm. Ultrasound and MR-based motion traces that were derived by tracking the salient motion of endogenous target structures in the superior-inferior (SI) direction demonstrated good concordance (Pearson correlation coefficients of 0.95-0.98) between the ultrasound and MRI datasets. CONCLUSION: We have demonstrated that our hands-free, e4D probe can acquire ultrasound images during a MR acquisition at frame rates of approximately 4 frames per second (fps) without impacting either the MR or ultrasound image quality. This use of this technology for interventional procedures (e.g. biopsies and drug delivery) and motion compensation during imaging are also being explored.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Eletrônica , Humanos , Movimento (Física) , Imagens de Fantasmas , Ultrassonografia
18.
Theranostics ; 11(13): 6120-6137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995649

RESUMO

Rationale: Clinical interest in combining targeted radionuclide therapies (TRT) with immunotherapies is growing. External beam radiation therapy (EBRT) activates a type 1 interferon (IFN1) response mediated via stimulator of interferon genes (STING), and this is critical to its therapeutic interaction with immune checkpoint blockade. However, little is known about the time course of IFN1 activation after EBRT or whether this may be induced by decay of a TRT source. Methods: We examined the IFN1 response and expression of immune susceptibility markers in B78 and B16 melanomas and MOC2 head and neck cancer murine models using qPCR and western blot. For TRT, we used 90Y chelated to NM600, an alkylphosphocholine analog that exhibits selective uptake and retention in tumor cells including B78 and MOC2. Results: We observed significant IFN1 activation in all cell lines, with peak activation in B78, B16, and MOC2 cell lines occurring 7, 7, and 1 days, respectively, following RT for all doses. This effect was STING-dependent. Select IFN response genes remained upregulated at 14 days following RT. IFN1 activation following STING agonist treatment in vitro was identical to RT suggesting time course differences between cell lines were mediated by STING pathway kinetics and not DNA damage susceptibility. In vivo delivery of EBRT and TRT to B78 and MOC2 tumors resulted in a comparable time course and magnitude of IFN1 activation. In the MOC2 model, the combination of 90Y-NM600 and dual checkpoint blockade therapy reduced tumor growth and prolonged survival compared to single agent therapy and cumulative dose equivalent combination EBRT and dual checkpoint blockade therapy. Conclusions: We report the time course of the STING-dependent IFN1 response following radiation in multiple murine tumor models. We show the potential of TRT to stimulate IFN1 activation that is comparable to that observed with EBRT and this may be critical to the therapeutic integration of TRT with immunotherapies.


Assuntos
Carcinoma de Células Escamosas/radioterapia , Interferon Tipo I/fisiologia , Melanoma Experimental/radioterapia , Animais , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/fisiopatologia , Linhagem Celular Tumoral , Terapia Combinada , Relação Dose-Resposta à Radiação , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Técnicas de Inativação de Genes , Neoplasias de Cabeça e Pescoço/patologia , Inibidores de Checkpoint Imunológico , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Linfócitos/efeitos dos fármacos , Linfócitos/efeitos da radiação , Melanoma Experimental/imunologia , Melanoma Experimental/fisiopatologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/fisiologia , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Fatores de Tempo , Proteína Tumoral 1 Controlada por Tradução , Ensaio Tumoral de Célula-Tronco , Regulação para Cima , Radioisótopos de Ítrio/farmacocinética , Radioisótopos de Ítrio/uso terapêutico
19.
Phys Med ; 84: 159-167, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33901860

RESUMO

OBJECTIVES: The purpose of this study was to dosimetrically benchmark gel dosimetry measurements in a dynamically deformable abdominal phantom for intrafraction image guidance through a multi-dosimeter comparison. Once benchmarked, the study aimed to perform a proof-of-principle study for validation measurements of an ultrasound image-guided radiotherapy delivery system. METHODS: The phantom was dosimetrically benchmarked by delivering a liver VMAT plan and measuring the 3D dose distribution with DEFGEL dosimeters. Measured doses were compared to the treatment planning system and measurements acquired with radiochromic film and an ion chamber. The ultrasound image guidance validation was performed for a hands-free ultrasound transducer for the tracking of liver motion during treatment. RESULTS: Gel dosimeters were compared to the TPS and film measurements, showing good qualitative dose distribution matches, low γ values through most of the high dose region, and average 3%/5 mm γ-analysis pass rates of 99.2%(0.8%) and 90.1%(0.8%), respectively. Gel dosimeter measurements matched ion chamber measurements within 3%. The image guidance validation study showed the measurement of the treatment delivery improvements due to the inclusion of the ultrasound image guidance system. Good qualitative matching of dose distributions and improvements of the γ-analysis results were observed for the ultrasound-gated dosimeter compared to the ungated dosimeter. CONCLUSIONS: DEFGEL dosimeters in phantom showed good agreement with the planned dose and other dosimeters for dosimetric benchmarking. Ultrasound image guidance validation measurements showed good proof-of-principle of the utility of the phantom system as a method of validating ultrasound-based image guidance systems and potentially other image guidance methods.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Imagens de Fantasmas , Dosagem Radioterapêutica , Ultrassonografia de Intervenção
20.
Radiat Res ; 195(6): 522-540, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826741

RESUMO

Brain metastases develop in over 60% of advanced melanoma patients and negatively impact quality of life and prognosis. In a murine melanoma model, we previously showed that an in situ vaccination (ISV) regimen, combining radiation treatment and intratumoral (IT) injection of immunocytokine (IC: anti-GD2 antibody fused to IL2), along with the immune checkpoint inhibitor anti-CTLA-4, robustly eliminates peripheral flank tumors but only has modest effects on co-occurring intracranial tumors. In this study, we investigated the ability of low-dose radiation to the brain to potentiate anti-tumor immunity against a brain tumor when combined with ISV + anti-CTLA-4. B78 (GD2+, immunologically "cold") melanoma tumor cells were implanted into the flank and the right striatum of the brain in C57BL/6 mice. Flank tumors (50-150 mm3) were treated following a previously optimized ISV regimen [radiation (12 Gy × 1, treatment day 1), IT-IC (50 µg daily, treatment days 6-10), and anti-CTLA-4 (100 µg, treatment days 3, 6, 9)]. Mice that additionally received whole-brain radiation treatment (WBRT, 4 Gy × 1) on day 15 demonstrated significantly increased survival compared to animals that received ISV + anti-CTLA-4 alone, WBRT alone or no treatment (control) (P < 0.001, log-rank test). Timing of WBRT was critical, as WBRT administration on day 1 did not significantly enhance survival compared to ISV + anti-CTLA-4, suggesting that the effect of WBRT on survival might be mediated through immune modulation and not just direct tumor cell cytotoxicity. Modest increases in T cells (CD8+ and CD4+) and monocytes/macrophages (F4/80+) but no changes in FOXP3+ regulatory T cells (Tregs), were observed in brain melanoma tumors with addition of WBRT (on day 15) to ISV + anti-CTLA-4. Cytokine multiplex immunoassay revealed distinct changes in both intracranial melanoma and contralateral normal brain with addition of WBRT (day 15) to ISV + anti-CTLA-4, with notable significant changes in pro-inflammatory (e.g., IFNγ, TNFα and LIX/CXCL5) and suppressive (e.g., IL10, IL13) cytokines as well as chemokines (e.g., IP-10/CXCL10 and MIG/CXCL9). We tested the ability of the alkylphosphocholine analog, NM600, to deliver immunomodulatory radiation to melanoma brain tumors as a targeted radionuclide therapy (TRT). Yttrium-86 (86Y) chelated to NM600 was delivered intravenously by tail vein to mice harboring flank and brain melanoma tumors, and PET imaging demonstrated specific accumulation up to 72 h at each tumor site (∼12:1 brain tumor/brain and ∼8:1 flank tumor/muscle). When NM600 was chelated to therapeutic ß-particle-emitting 90Y and administered on treatment day 13, T-cell infiltration and cytokine profiles were altered in melanoma brain tumor, like that observed for WBRT. Overall, our results demonstrate that addition of low-dose radiation, timed appropriately with ISV administration to tumors outside the brain, significantly increases survival in animals co-harboring melanoma brain tumors. This observation has potentially important translational implications as a treatment strategy for increasing the response of tumors in the brain to systemically administered immunotherapies.


Assuntos
Neoplasias Encefálicas/imunologia , Imunidade/efeitos da radiação , Melanoma Experimental/imunologia , Vacinação , Animais , Neoplasias Encefálicas/prevenção & controle , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade/efeitos dos fármacos , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Proteína Tumoral 1 Controlada por Tradução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA