RESUMO
Liquid biopsy, through isolation and analysis of disease-specific analytes, has evolved as a promising tool for safe and minimally invasive diagnosis and monitoring of tumors. It also has tremendous utility as a companion diagnostic allowing detection of biomarkers in a range of cancers (lung, breast, colon, ovarian, brain). However, clinical implementation and validation remains a challenge. Among other stages of development, preanalytical variables are critical in influencing the downstream cellular and molecular analysis of different analytes. Although considerable progress has been made to address these challenges, a comprehensive assessment of the impact on diagnostic parameters and consensus on standardized and optimized protocols is still lacking. Here, we summarize and critically evaluate key variables in the preanalytical stage, including study population selection, choice of biofluid, sample handling and collection, processing, and storage. There is an unmet need to develop and implement comprehensive preanalytical guidelines on the optimal practices and methodologies.
Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Biópsia Líquida , BiomarcadoresRESUMO
Glioblastoma (GBM) is the most aggressive primary brain tumor with a median survival of 15 months despite standard care therapy consisting of maximal surgical debulking, followed by radiation therapy with concurrent and adjuvant temozolomide treatment. The natural history of GBM is characterized by inevitable recurrence with patients dying from increasingly resistant tumor regrowth after therapy. Several mechanisms including inter- and intratumoral heterogeneity, the evolution of therapy-resistant clonal subpopulations, reacquisition of stemness in glioblastoma stem cells, multiple drug efflux mechanisms, the tumor-promoting microenvironment, metabolic adaptations, and enhanced repair of drug-induced DNA damage have been implicated in therapy failure. Extracellular vesicles (EVs) have emerged as crucial mediators in the maintenance and establishment of GBM. Multiple seminal studies have uncovered the multi-dynamic role of EVs in the acquisition of drug resistance. Mechanisms include EV-mediated cargo transfer and EVs functioning as drug efflux channels and decoys for antibody-based therapies. In this review, we discuss the various mechanisms of therapy resistance in GBM, highlighting the emerging role of EV-orchestrated drug resistance. Understanding the landscape of GBM resistance is critical in devising novel therapeutic approaches to fight this deadly disease.