Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arthritis Res Ther ; 25(1): 190, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789403

RESUMO

BACKGROUND: As current therapies for canine osteoarthritis (OA) provide mainly symptomatic improvement and fail to address the complex pathology of the disease, mesenchymal stem cells (MSCs) offer a promising biological approach to address both aspects of OA through their immunomodulatory properties. METHODS: This study aimed to investigate the safety and efficacy of xenogeneic MSCs in dogs with OA at different dose levels after intravenous injection. OA was surgically induced in the right stifle joint. Thirty-two male and female dogs were divided into three treatment groups and a control group. Regular general physical examinations; lameness, joint, radiographic, and animal caretaker assessments; pressure plate analyses; and blood analyses were performed over 42 days. At study end, joint tissues were evaluated regarding gross pathology, histopathology, and immunohistochemistry. In a follow-up study, the biodistribution of intravenously injected 99mTc-labeled equine peripheral blood-derived MSCs was evaluated over 24h in three dogs after the cruciate ligament section. RESULTS: The dose determination study showed the systemic administration of ePB-MSCs in a canine OA model resulted in an analgesic, anti-inflammatory, and joint tissue protective effect associated with improved clinical signs and improved cartilage structure, as well as a good safety profile. Furthermore, a clear dose effect was found with 0.3 × 106 ePB-MSCs as the most effective dose. In addition, this treatment was demonstrated to home specifically towards the injury zone in a biodistribution study. CONCLUSION: This model-based study is the first to confirm the efficacy and safety of systemically administered xenogeneic MSCs in dogs with OA. The systemic administration of a low dose of xenogeneic MSCs could offer a widely accessible, safe, and efficacious treatment to address the complex pathology of canine OA and potentially slow down the disease progression by its joint tissue protective effect.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite , Animais , Masculino , Cães , Feminino , Cavalos , Seguimentos , Distribuição Tecidual , Injeções Intra-Articulares , Osteoartrite/patologia , Imunomodulação , Transplante de Células-Tronco Mesenquimais/métodos
2.
Vet Immunol Immunopathol ; 239: 110306, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34365135

RESUMO

OBJECTIVE: The use of mesenchymal stem cells (MSCs) for the treatment of equine joint disease is widely investigated because of their regenerative and immunomodulatory potential. Allogeneic MSCs provide a promising alternative to autologous MSCs, since the former are immediately available and enable a thorough donor screening. However, questions have been raised concerning the immunogenic potential of allogeneic MSCs, especially after repeated administration. METHODS: Current retrospective study assessed the cellular and humoral immunogenicity of ten jumping and dressage horses with naturally occurring degenerative joint disease which were treated 3 times intra-articularly with a 1 mL stem cell suspension containing 1.4-2.5 million chondrogenic induced equine allogeneic peripheral blood-derived MSCs (ciMSCs) combined with 1 mL equine allogeneic plasma. Stem cells from 2 donor horses were used. Horses were clinically evaluated for joint effusion, presence of pain to palpation and skin surface temperature at the local injection site, joint range of motion, occurrence of adverse events and the presence of ectopic tissue. The cellular immune response was analyzed using a modified mixed lymphocyte reaction and the humoral immune response was investigated using a flow cytometric crossmatch assay by which the presence of alloantibodies against the ciMSCs was evaluated. Presence of anti-bovine serum albumin antibodies was detected via ELISA. RESULTS: Clinical evaluation of the horses revealed no serious adverse effects or suspected adverse drug reactions and no ectopic tissue formation at the local injection site or in other areas of the body. Generally, repeated administration led to a decrease of horses with joint effusion of the affected joint. Pain to palpation, skin surface temperature and joint range of motion did not increase or even decreased after treatment administration. Allogeneic ciMSCs did not induce a cellular immune response and no alloantibodies were detected in the recipients' serum, regardless the presence of BSA antibodies in 70 % of the horses. CONCLUSION: Repeated intra-articular injections with allogeneic equine ciMSCs did not elicit clinically relevant adverse events. Furthermore, current study indicates the absence of a cellular or a humoral immune response following repeated intra-articular injections.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Cavalos , Células-Tronco Mesenquimais , Animais , Transplante de Células-Tronco Hematopoéticas/veterinária , Imunidade Celular , Imunidade Humoral , Injeções Intra-Articulares , Estudos Retrospectivos
3.
Stem Cell Res Ther ; 12(1): 393, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256833

RESUMO

BACKGROUND: Mesenchymal stem cell treatments in dogs have been investigated as a potential innovative alternative to current conventional therapies for a variety of conditions. So far, the precise mode of action of the MSCs has yet to be determined. The aim of this study was to gain more insights into the pharmacokinetics of MSCs by evaluating their biodistribution in healthy dogs after different injection routes. METHODS: Three different studies were performed in healthy dogs to evaluate the biodistribution pattern of radiolabelled equine peripheral blood-derived mesenchymal stem cells following intravenous, intramuscular and subcutaneous administration in comparison with free 99mTechnetium. The labelling of the equine peripheral blood-derived mesenchymal stem cells was performed using stannous chloride as a reducing agent. Whole-body scans were obtained using a gamma camera during a 24-h follow-up. RESULTS: The labelling efficiency ranged between 59.58 and 83.82%. Free 99mTechnetium accumulation was predominantly observed in the stomach, thyroid, bladder and salivary glands, while following intravenous injection, the 99mTechnetium-labelled equine peripheral blood-derived mesenchymal stem cells majorly accumulated in the liver throughout the follow-up period. After intramuscular and subcutaneous injection, the injected dose percentage remained very high at the injection site. CONCLUSIONS: A distinct difference was noted in the biodistribution pattern of the radiolabelled equine peripheral blood-derived mesenchymal stem cells compared to free 99mTechnetium indicating equine peripheral blood-derived mesenchymal stem cells have a specific pharmacokinetic pattern after systemic administration in healthy dogs. Furthermore, the biodistribution pattern of the used xenogeneic equine peripheral blood-derived mesenchymal stem cells appeared to be different from previously reported experiments using different sources of mesenchymal stem cells.


Assuntos
Células-Tronco Mesenquimais , Animais , Cães , Cavalos , Injeções Intravenosas , Injeções Subcutâneas , Tecnécio , Distribuição Tecidual
4.
Vet Immunol Immunopathol ; 227: 110083, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32563854

RESUMO

OBJECTIVE: Due to the immunomodulatory properties of mesenchymal stem cells (MSCs) through stimulation of endogenous immune cells by paracrine signals and cell contact, they have been proposed as alternative treatment option for many inflammatory and immune-mediated diseases in veterinary medicine. However, the long-term cultivation possibilities of feline MSCs are currently compromised due to a restricted proliferation capacity. Therefore, the xenogeneic use of equine peripheral blood-derived MSCs (ePB-MSCs) would present an interesting alternative thanks to their superior cultivation properties. To the authors' knowledge, there are currently no safety reports concerning the xenogeneic use of ePB-MSCs in cats. Therefore, the overall goal of this preliminary study was to investigate if ePB-MSCs can safely be administered in healthy cats and by extension evaluating their immunogenic and immunomodulatory properties. METHODS: Ten healthy cats were intravenously (i.v.) injected with 3 × 105 ePB-MSCs at three time points (T0, T1, T2). All cats were daily inspected by the caretaker and underwent a physical examination with hematological and biochemical analysis at day 0 (T0), week 2 (T1), week 4 (T2) and week 6 (T3) by a veterinarian. Furthermore, a modified mixed lymphocyte reaction (MLR) was performed at T0 and T3 for each cat in order to evaluate immunogenic and immunomodulatory properties of the ePB-MSCs RESULTS: No adverse clinical effects could be detected following repeated i.v. administration of ePB-MSCs in all cats. Significant lower protein (T1: P-value = 0.002; T2: P-value > 0.001; T3: P-value = 0.004) and albumin levels (T1: P-value = 0.003; T2: P-value = 0.001) were seen after repeated administration of ePB-MSCs, compared to T0. However, all biochemical and hematological parameters stayed within clinical acceptance level. In addition, the repeated injections did not induce a cellular immune response before and after repeated ePB-MSCs administration. Furthermore, convincing immunomodulatory properties of ePB-MSCs on feline peripheral blood mononuclear cells were confirmed in the MLR-assay CONCLUSION: This preliminary study demonstrates that ePB-MSCs can safely be administered in healthy cats and provide a promising alternative for the treatment of various inflammatory diseases in cats.


Assuntos
Imunomodulação , Transplante de Células-Tronco Mesenquimais/veterinária , Células-Tronco Mesenquimais/imunologia , Administração Intravenosa , Animais , Gatos , Células Cultivadas , Feminino , Cavalos , Leucócitos Mononucleares/imunologia , Teste de Cultura Mista de Linfócitos , Masculino , Dados Preliminares
5.
Curr Stem Cell Res Ther ; 9(6): 497-503, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25175766

RESUMO

Cell-based therapies, such as treatments with mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) are thought to have beneficial effects on the clinical outcome of orthopedic injuries, but very few animal studies with large sample size are published so far. Therefore, the aim of this study was to assess the safety and report the clinical outcome of allogenic, immature or chondrogenic induced MSCs in combination with PRP for the treatment of degenerative joint disease (DJD) in 165 horses. MSCs and PRP were isolated from a 6-year-old donor horse and transplanted either in their native state or after chondrogenic induction in combination with PRP into degenerated stifle (n=30), fetlock (n=58), pastern (n=34) and coffin (n=43) joints. Safety was assessed by means of clinical evaluation and the outcome was defined as failure to return to work (score 0), rehabilitation (score 1), return to work (score 2) and return to previous level (score 3), shortly (6 weeks) after treatment or at 18 weeks for the patients that returned for long-term follow-up (n=91). No adverse effects were noticed, except for three patients who showed a moderate flare reaction within one week after treatment of the fetlock joint without long-term effects (1.8% of 165 horses). Already after 6 weeks, 45% (native MSCs) and 60% (chondrogenic induced MSCs) of the treated patients returned to work (→ score 2+3) and the beneficial effects of the treatment further increased after 18 weeks (78% for native MSCs and 86% for chondrogenic induced MSCs). With the odds ratio of 1.47 for short-term and 1.24 for long-term, higher average scores (but statistically not significant) could be noticed using chondrogenic induced MSCs as compared to native MSCs. For all three lower limb joints a higher percentage of the treated patients returned to work after chondrogenic induced MSC treatment, whereas the opposite trend could be noticed for stifle joints. Nevertheless, more protracted follow-up data should confirm the sustainability of these joints.


Assuntos
Doenças dos Cavalos/terapia , Artropatias/veterinária , Transplante de Células-Tronco Mesenquimais , Aloenxertos , Animais , Células Cultivadas , Condrogênese , Feminino , Cavalos , Artropatias/terapia , Masculino , Células-Tronco Mesenquimais/fisiologia , Projetos Piloto , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA