Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Health ; 23(1): 35, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575976

RESUMO

BACKGROUND: An increasing number of studies suggest adverse effects of exposure to ambient air pollution on cognitive function, but the evidence is still limited. We investigated the associations between long-term exposure to air pollutants and cognitive function in the English Longitudinal Study of Ageing (ELSA) cohort of older adults. METHODS: Our sample included 8,883 individuals from ELSA, based on a nationally representative study of people aged ≥ 50 years, followed-up from 2002 until 2017. Exposure to air pollutants was modelled by the CMAQ-urban dispersion model and assigned to the participants' residential postcodes. Cognitive test scores of memory and executive function were collected biennially. The associations between these cognitive measures and exposure to ambient concentrations of NO2, PM10, PM2.5 and ozone were investigated using mixed-effects models adjusted for time-varying age, physical activity and smoking status, as well as baseline gender and level of education. RESULTS: Increasing long-term exposure per interquartile range (IQR) of NO2 (IQR: 13.05 µg/m3), PM10 (IQR: 3.35 µg/m3) and PM2.5 (IQR: 2.7 µg/m3) were associated with decreases in test scores of composite memory by -0.10 (95% confidence interval [CI]: -0.14, -0.07), -0.02 [-0.04, -0.01] and -0.08 [-0.11, -0.05], respectively. The same increases in NO2, PM10 and PM2.5 were associated with decreases in executive function score of -0.31 [-0.38, -0.23], -0.05 [-0.08, -0.02] and -0.16 [-0.22, -0.10], respectively. The association with ozone was inverse across both tests. Similar results were reported for the London-dwelling sub-sample of participants. CONCLUSIONS: The present study was based on a long follow-up with several repeated measurements per cohort participant and long-term air pollution exposure assessment at a fine spatial scale. Increasing long-term exposure to NO2, PM10 and PM2.5 was associated with a decrease in cognitive function in older adults in England. This evidence can inform policies related to modifiable environmental exposures linked to cognitive decline.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Idoso , Humanos , Envelhecimento , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cognição , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Estudos Longitudinais , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise , Inglaterra
2.
Environ Res ; 249: 118354, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325778

RESUMO

BACKGROUND: Arterial stiffness (AS) is an important predicting factor for cardiovascular disease. However, no epidemiological studies have ever explored the mediating role of biomarkers in the association between ozone and AS, nor weather fish oil modified such association. METHODS: Study participants were drawn from the UK biobank, and a total of 95,699 middle-aged and older adults were included in this study. Ozone was obtained from Community Multiscale Air Quality (CMAQ) model matched to residential addresses, fish oil from self-reported intake, and arterial stiffness was based on device measurements. First, we applied a double robust approach to explore the association between ozone or fish oil intake and arterial stiffness, adjusting for potential confounders at the individual and regional levels. Then, how triglycerides, apolipoprotein B (Apo B)/apolipoprotein A (ApoA) and non-high-density lipoprotein cholesterol (Non-HDL-C) mediate the relationship between ozone and AS. Last, the modifying role of fish oil was further explored by stratified analysis. RESULTS: The mean age of participants was 55 years; annual average ozone exposure was associated with ASI (beta:0.189 [95%CI: 0.146 to 0.233], P < 0.001), and compared to participants who did not consume fish oil, fish oil users had a lower ASI (beta: 0.061 [95%CI: -0.111 to -0.010], P = 0.016). The relationship between ozone exposure and AS was mediated by triglycerides, ApoB/ApoA, and Non-HDL-C with mediation proportions ranging from 10.90% to 18.30%. Stratified analysis showed lower estimates on the ozone-AS relationship in fish oil users (P = 0.011). CONCLUSION: Ozone exposure was associated with higher levels of arterial stiffness, in contrast to fish oil consumption, which showed a protective association. The association between ozone exposure and arterial stiffness was partially mediated by some biomarkers. In the general population, fish oil consumption might provide protection against ozone-related AS.


Assuntos
Óleos de Peixe , Ozônio , Rigidez Vascular , Humanos , Ozônio/análise , Ozônio/efeitos adversos , Pessoa de Meia-Idade , Óleos de Peixe/administração & dosagem , Masculino , Feminino , Rigidez Vascular/efeitos dos fármacos , Idoso , Suplementos Nutricionais , Poluentes Atmosféricos/análise , Reino Unido , Triglicerídeos/sangue
3.
Artigo em Inglês | MEDLINE | ID: mdl-36497970

RESUMO

Increasing evidence suggests an adverse association between ambient air pollution and the incidence of dementia in adult populations, although results at present are mixed and further work is required. The present study investigated the relationships between NO2, PM10, PM2.5 and ozone on dementia incidence in a cohort of English residents, aged 50 years and older, followed up between 2004 and 2017 (English Longitudinal Study of Ageing; n = 8525). Cox proportional hazards models were applied to investigate the association between time to incident dementia and exposure to pollutants at baseline. Hazard ratios (HRs) were calculated per 10 µg/m3. Models were adjusted for age, gender, physical activity, smoking status and level of education (the latter as a sensitivity analysis). A total of 389 dementia cases were identified during follow-up. An increased risk of developing dementia was suggested with increasing exposure to PM2.5 (HR: 1.10; 95% confidence interval (CI): 0.88, 1.37), whilst NO2, PM10 and ozone exhibited no discernible relationships. Hazard ratios were 0.97 (CI: 0.89, 1.05) for NO2; 0.98 (CI: 0.89, 1.08) for PM10; 1.01 (CI: 0.94, 1.09) for ozone. In the London sub-sample (39 dementia cases), a 10 µg/m3 increase in PM10 was found to be associated with increased risk of dementia by 16%, although not statistically significant (HR: 1.16; CI: 0.90, 1.48), and the magnitude of effect for PM2.5 increased, whilst NO2 and ozone exhibited similar associations as observed in the England-wide study. Further work is required to fully elucidate the potentially adverse associations between air pollution exposure and dementia incidence.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Demência , Ozônio , Idoso , Adulto , Humanos , Pessoa de Meia-Idade , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Estudos Longitudinais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Ozônio/análise , Incidência , Demência/induzido quimicamente , Demência/epidemiologia , Dióxido de Nitrogênio/análise
4.
JAMA Psychiatry ; 76(6): 614-623, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30916743

RESUMO

Importance: Urbanicity is a well-established risk factor for clinical (eg, schizophrenia) and subclinical (eg, hearing voices and paranoia) expressions of psychosis. To our knowledge, no studies have examined the association of air pollution with adolescent psychotic experiences, despite air pollution being a major environmental problem in cities. Objectives: To examine the association between exposure to air pollution and adolescent psychotic experiences and test whether exposure mediates the association between urban residency and adolescent psychotic experiences. Design, Setting, and Participants: The Environmental-Risk Longitudinal Twin Study is a population-based cohort study of 2232 children born during the period from January 1, 1994, through December 4, 1995, in England and Wales and followed up from birth through 18 years of age. The cohort represents the geographic and socioeconomic composition of UK households. Of the original cohort, 2066 (92.6%) participated in assessments at 18 years of age, of whom 2063 (99.9%) provided data on psychotic experiences. Generation of the pollution data was completed on October 4, 2017, and data were analyzed from May 4 to November 21, 2018. Exposures: High-resolution annualized estimates of exposure to 4 air pollutants-nitrogen dioxide (NO2), nitrogen oxides (NOx), and particulate matter with aerodynamic diameters of less than 2.5 (PM2.5) and less than 10 µm (PM10)-were modeled for 2012 and linked to the home addresses of the sample plus 2 commonly visited locations when the participants were 18 years old. Main Outcomes and Measures: At 18 years of age, participants were privately interviewed regarding adolescent psychotic experiences. Urbanicity was estimated using 2011 census data. Results: Among the 2063 participants who provided data on psychotic experiences, sex was evenly distributed (52.5% female). Six hundred twenty-three participants (30.2%) had at least 1 psychotic experience from 12 to 18 years of age. Psychotic experiences were significantly more common among adolescents with the highest (top quartile) level of annual exposure to NO2 (odds ratio [OR], 1.71; 95% CI, 1.28-2.28), NOx (OR, 1.72; 95% CI, 1.30-2.29), and PM2.5 (OR, 1.45; 95% CI, 1.11-1.90). Together NO2 and NOx statistically explained 60% of the association between urbanicity and adolescent psychotic experiences. No evidence of confounding by family socioeconomic status, family psychiatric history, maternal psychosis, childhood psychotic symptoms, adolescent smoking and substance dependence, or neighborhood socioeconomic status, crime, and social conditions occurred. Conclusions and Relevance: In this study, air pollution exposure-particularly NO2 and NOx-was associated with increased odds of adolescent psychotic experiences, which partly explained the association between urban residency and adolescent psychotic experiences. Biological (eg, neuroinflammation) and psychosocial (eg, stress) mechanisms are plausible.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Transtornos Psicóticos/etiologia , Adolescente , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Criança , Feminino , Humanos , Masculino , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Óxidos de Nitrogênio/efeitos adversos , Óxidos de Nitrogênio/análise , Material Particulado/efeitos adversos , Material Particulado/análise
5.
BMJ Open ; 8(9): e022404, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206085

RESUMO

OBJECTIVE: To investigate whether the incidence of dementia is related to residential levels of air and noise pollution in London. DESIGN: Retrospective cohort study using primary care data. SETTING: 75 Greater London practices. PARTICIPANTS: 130 978 adults aged 50-79 years registered with their general practices on 1 January 2005, with no recorded history of dementia or care home residence. PRIMARY AND SECONDARY OUTCOME MEASURES: A first recorded diagnosis of dementia and, where specified, subgroups of Alzheimer's disease and vascular dementia during 2005-2013. The average annual concentrations during 2004 of nitrogen dioxide (NO2), particulate matter with a median aerodynamic diameter ≤2.5 µm (PM2.5) and ozone (O3) were estimated at 20×20 m resolution from dispersion models. Traffic intensity, distance from major road and night-time noise levels (Lnight) were estimated at the postcode level. All exposure measures were linked anonymously to clinical data via residential postcode. HRs from Cox models were adjusted for age, sex, ethnicity, smoking and body mass index, with further adjustments explored for area deprivation and comorbidity. RESULTS: 2181 subjects (1.7%) received an incident diagnosis of dementia (39% mentioning Alzheimer's disease, 29% vascular dementia). There was a positive exposure response relationship between dementia and all measures of air pollution except O3, which was not readily explained by further adjustment. Adults living in areas with the highest fifth of NO2 concentration (>41.5 µg/m3) versus the lowest fifth (<31.9 µg/m3) were at a higher risk of dementia (HR=1.40, 95% CI 1.12 to 1.74). Increases in dementia risk were also observed with PM2.5, PM2.5 specifically from primary traffic sources only and Lnight, but only NO2 and PM2.5 remained statistically significant in multipollutant models. Associations were more consistent for Alzheimer's disease than vascular dementia. CONCLUSIONS: We have found evidence of a positive association between residential levels of air pollution across London and being diagnosed with dementia, which is unexplained by known confounding factors.


Assuntos
Poluição do Ar , Doença de Alzheimer , Demência Vascular , Exposição Ambiental , Ruído , Idoso , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Demência Vascular/diagnóstico , Demência Vascular/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Feminino , Humanos , Londres/epidemiologia , Masculino , Pessoa de Meia-Idade , Dióxido de Nitrogênio/análise , Ruído/efeitos adversos , Ruído/prevenção & controle , Material Particulado/análise , Atenção Primária à Saúde/estatística & dados numéricos , Características de Residência/estatística & dados numéricos , Fatores de Risco , Emissões de Veículos/análise
6.
Environ Int ; 96: 41-47, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27591803

RESUMO

BACKGROUND: Short telomeres are associated with chronic disease and early mortality. Recent studies in adults suggest an association between telomere length and exposure to particulate matter, and that ethnicity may modify the relationship. However associations in children are unknown. OBJECTIVES: We examined associations between air pollution and telomere length in an ethnically diverse group of children exposed to high levels of traffic derived pollutants, particularly diesel exhaust, and to environmental tobacco smoke. METHODS: Oral DNA from 333 children (8-9years) participating in a study on air quality and respiratory health in 23 inner city London schools was analysed for relative telomere length using monochrome multiplex qPCR. Annual, weekly and daily exposures to nitrogen oxides and particulate matter were obtained from urban dispersion models (2008-10) and tobacco smoke by urinary cotinine. Ethnicity was assessed by self-report and continental ancestry by analysis of 28 random genomic markers. We used linear mixed effects models to examine associations with telomere length. RESULTS: Telomere length increased with increasing annual exposure to NOx (model coefficient 0.003, [0.001, 0.005], p<0.001), NO2 (0.009 [0.004, 0.015], p<0.001), PM2.5 (0.041, [0.020, 0.063], p<0.001) and PM10 (0.096, [0.044, 0.149], p<0.001). There was no association with environmental tobacco smoke. Telomere length was increased in children reporting black ethnicity (22% [95% CI 10%, 36%], p<0.001) CONCLUSIONS: Pollution exposure is associated with longer telomeres in children and genetic ancestry is an important determinant of telomere length. Further studies should investigate both short and long-term associations between pollutant exposure and telomeres in childhood and assess underlying mechanisms.


Assuntos
Poluição do Ar/efeitos adversos , Etnicidade/estatística & dados numéricos , Homeostase do Telômero/efeitos dos fármacos , Telômero/efeitos dos fármacos , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Criança , Feminino , Humanos , Modelos Lineares , Londres , Masculino , Óxidos de Nitrogênio/efeitos adversos , Material Particulado/efeitos adversos , Homeostase do Telômero/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Poluição por Fumaça de Tabaco/análise , Emissões de Veículos/análise
7.
Eur Heart J ; 36(39): 2653-61, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26104392

RESUMO

AIMS: Road traffic noise has been associated with hypertension but evidence for the long-term effects on hospital admissions and mortality is limited. We examined the effects of long-term exposure to road traffic noise on hospital admissions and mortality in the general population. METHODS AND RESULTS: The study population consisted of 8.6 million inhabitants of London, one of Europe's largest cities. We assessed small-area-level associations of day- (7:00-22:59) and nighttime (23:00-06:59) road traffic noise with cardiovascular hospital admissions and all-cause and cardiovascular mortality in all adults (≥25 years) and elderly (≥75 years) through Poisson regression models. We adjusted models for age, sex, area-level socioeconomic deprivation, ethnicity, smoking, air pollution, and neighbourhood spatial structure. Median daytime exposure to road traffic noise was 55.6 dB. Daytime road traffic noise increased the risk of hospital admission for stroke with relative risk (RR) 1.05 [95% confidence interval (CI): 1.02-1.09] in adults, and 1.09 (95% CI: 1.04-1.14) in the elderly in areas >60 vs. <55 dB. Nighttime noise was associated with stroke admissions only among the elderly. Daytime noise was significantly associated with all-cause mortality in adults [RR 1.04 (95% CI: 1.00-1.07) in areas >60 vs. <55 dB]. Positive but non-significant associations were seen with mortality for cardiovascular and ischaemic heart disease, and stroke. Results were similar for the elderly. CONCLUSIONS: Long-term exposure to road traffic noise was associated with small increased risks of all-cause mortality and cardiovascular mortality and morbidity in the general population, particularly for stroke in the elderly.


Assuntos
Doenças Cardiovasculares/mortalidade , Ruído dos Transportes/efeitos adversos , Adulto , Idade de Início , Idoso , Causas de Morte , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Londres/epidemiologia , Masculino , Pessoa de Meia-Idade , Prognóstico
8.
BMJ ; 347: f5432, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24103537

RESUMO

OBJECTIVE: To investigate the association of aircraft noise with risk of stroke, coronary heart disease, and cardiovascular disease in the general population. DESIGN: Small area study. SETTING: 12 London boroughs and nine districts west of London exposed to aircraft noise related to Heathrow airport in London. POPULATION: About 3.6 million residents living near Heathrow airport. Risks for hospital admissions were assessed in 12 110 census output areas (average population about 300 inhabitants) and risks for mortality in 2378 super output areas (about 1500 inhabitants). MAIN OUTCOME MEASURES: Risk of hospital admissions for, and mortality from, stroke, coronary heart disease, and cardiovascular disease, 2001-05. RESULTS: Hospital admissions showed statistically significant linear trends (P<0.001 to P<0.05) of increasing risk with higher levels of both daytime (average A weighted equivalent noise 7 am to 11 pm, L(Aeq),16 h) and night time (11 pm to 7 am, Lnight) aircraft noise. When areas experiencing the highest levels of daytime aircraft noise were compared with those experiencing the lowest levels (>63 dB v ≤ 51 dB), the relative risk of hospital admissions for stroke was 1.24 (95% confidence interval 1.08 to 1.43), for coronary heart disease was 1.21 (1.12 to 1.31), and for cardiovascular disease was 1.14 (1.08 to 1.20) adjusted for age, sex, ethnicity, deprivation, and a smoking proxy (lung cancer mortality) using a Poisson regression model including a random effect term to account for residual heterogeneity. Corresponding relative risks for mortality were of similar magnitude, although with wider confidence limits. Admissions for coronary heart disease and cardiovascular disease were particularly affected by adjustment for South Asian ethnicity, which needs to be considered in interpretation. All results were robust to adjustment for particulate matter (PM10) air pollution, and road traffic noise, possible for London boroughs (population about 2.6 million). We could not distinguish between the effects of daytime or night time noise as these measures were highly correlated. CONCLUSION: High levels of aircraft noise were associated with increased risks of stroke, coronary heart disease, and cardiovascular disease for both hospital admissions and mortality in areas near Heathrow airport in London. As well as the possibility of causal associations, alternative explanations such as residual confounding and potential for ecological bias should be considered.


Assuntos
Aeronaves , Aeroportos , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/efeitos adversos , Hospitalização/estatística & dados numéricos , Ruído dos Transportes/efeitos adversos , Medição de Risco/métodos , Idoso , Doenças Cardiovasculares/etiologia , Feminino , Humanos , Londres/epidemiologia , Masculino , Pessoa de Meia-Idade , Morbidade/tendências , Estudos Retrospectivos , Fatores de Risco , População Rural , Análise de Pequenas Áreas , Taxa de Sobrevida/tendências , Fatores de Tempo
9.
Environ Sci Technol ; 46(14): 7612-20, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22731499

RESUMO

Differences in the toxicity of ambient particulate matter (PM) due to varying particle composition across locations may contribute to variability in results from air pollution epidemiologic studies. Though most studies have used PM mass concentration as the exposure metric, an alternative which accounts for particle toxicity due to varying particle composition may better elucidate whether PM from specific sources is responsible for observed health effects. The oxidative potential (OP) of PM < 10 µm (PM(10)) was measured as the rate of depletion of the antioxidant reduced glutathione (GSH) in a model of human respiratory tract lining fluid. Using a database of GSH OP measures collected in greater London, U.K. from 2002 to 2006, we developed and validated a predictive spatiotemporal model of the weekly GSH OP of PM(10) that included geographic predictors. Predicted levels of OP were then used in combination with those of weekly PM(10) mass to estimate exposure to PM(10) weighted by its OP. Using cross-validation (CV), brake and tire wear emissions of PM(10) from traffic within 50 m and tailpipe emissions of nitrogen oxides from heavy-goods vehicles within 100 m were important predictors of GSH OP levels. Predictive accuracy of the models was high for PM(10) (CV R(2)=0.83) but only moderate for GSH OP (CV R(2) = 0.44) when comparing weekly levels; however, the GSH OP model predicted spatial trends well (spatial CV R(2) = 0.73). Results suggest that PM(10) emitted from traffic sources, specifically brake and tire wear, has a higher OP than that from other sources, and that this effect is very local, occurring within 50-100 m of roadways.


Assuntos
Modelos Teóricos , Material Particulado/química , Poluentes Atmosféricos/análise , Glutationa/química , Humanos , Londres , Oxirredução , Emissões de Veículos/análise
10.
Res Rep Health Eff Inst ; (163): 3-79, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22315924

RESUMO

On February 4, 2008, the world's largest low emission zone (LEZ) was established. At 2644 km2, the zone encompasses most of Greater London. It restricts the entry of the oldest and most polluting diesel vehicles, including heavy-goods vehicles (haulage trucks), buses and coaches, larger vans, and minibuses. It does not apply to cars or motorcycles. The LEZ scheme will introduce increasingly stringent Euro emissions standards over time. The creation of this zone presented a unique opportunity to estimate the effects of a stepwise reduction in vehicle emissions on air quality and health. Before undertaking such an investigation, robust baseline data were gathered on air quality and the oxidative activity and metal content of particulate matter (PM) from air pollution monitors located in Greater London. In addition, methods were developed for using databases of electronic primary-care records in order to evaluate the zone's health effects. Our study began in 2007, using information about the planned restrictions in an agreed-upon LEZ scenario and year-on-year changes in the vehicle fleet in models to predict air pollution concentrations in London for the years 2005, 2008, and 2010. Based on this detailed emissions and air pollution modeling, the areas in London were then identified that were expected to show the greatest changes in air pollution concentrations and population exposures after the implementation of the LEZ. Using these predictions, the best placement of a pollution monitoring network was determined and the feasibility of evaluating the health effects using electronic primary-care records was assessed. To measure baseline pollutant concentrations before the implementation of the LEZ, a comprehensive monitoring network was established close to major roadways and intersections. Output-difference plots from statistical modeling for 2010 indicated seven key areas likely to experience the greatest change in concentrations of nitrogen dioxide (NO2) (at least 3 microg/m3) and of PM with an aerodynamic diameter < or = 10 microm (PM10) (at least 0.75 microg/m3) as a result of the LEZ; these suggested that the clearest signals of change were most likely to be measured near roadsides. The seven key areas were also likely to be of importance in carrying out a study to assess the health outcomes of an air quality intervention like the LEZ. Of the seven key areas, two already had monitoring sites with a full complement of equipment, four had monitoring sites that required upgrades of existing equipment, and one required a completely new installation. With the upgrades and new installations in place, fully ratified (verified) pollutant data (for PM10, PM with an aerodynamic diameter < or = 2.5 microm [PM2.5], nitrogen oxides [NOx], and ozone [O3] at all sites as well as for particle number, black smoke [BS], carbon monoxide [CO], and sulfur dioxide [SO2] at selected sites) were then collected for analysis. In addition, the seven key monitoring sites were supported by other sites in the London Air Quality Network (LAQN). From these, a robust set of baseline air quality data was produced. Data from automatic and manual traffic counters as well as automatic license-plate recognition cameras were used to compile detailed vehicle profiles. This enabled us to establish more precise associations between ambient pollutant concentrations and vehicle emissions. An additional goal of the study was to collect baseline PM data in order to test the hypothesis that changes in traffic densities and vehicle mixes caused by the LEZ would affect the oxidative potential and metal content of ambient PM10 and PM2.5. The resulting baseline PM data set was the first to describe, in detail, the oxidative potential and metal content of the PM10 and PM2.5 of a major city's airshed. PM in London has considerable oxidative potential; clear differences in this measure were found from site to site, with evidence that the oxidative potential of both PM10 and PM2.5 at roadside monitoring sites was higher than at urban background locations. In the PM10 samples this increased oxidative activity appeared to be associated with increased concentrations of copper (Cu), barium (Ba), and bathophenanthroline disulfonate-mobilized iron (BPS Fe) in the roadside samples. In the PM2.5 samples, no simple association could be seen, suggesting that other unmeasured components were driving the increased oxidative potential in this fraction of the roadside samples. These data suggest that two components were contributing to the oxidative potential of roadside PM, namely Cu and BPS Fe in the coarse fraction of PM (PM with an aerodynamic diameter of 2.5 microm to 10 microm; PM(2.5-10)) and an unidentified redox catalyst in PM2.5. The data derived for this baseline study confirmed key observations from a more limited spatial mapping exercise published in our earlier HEI report on the introduction of the London's Congestion Charging Scheme (CCS) in 2003 (Kelly et al. 2011a,b). In addition, the data set in the current report provided robust baseline information on the oxidative potential and metal content of PM found in the London airshed in the period before implementation of the LEZ; the finding that a proportion of the oxidative potential appears in the PM coarse mode and is apparently related to brake wear raises important issues regarding the nature of traffic management schemes. The final goal of this baseline study was to establish the feasibility, in ethical and operational terms, of using the U.K.'s electronic primary-care records to evaluate the effects of the LEZ on human health outcomes. Data on consultations and prescriptions were compiled from a pilot group of general practices (13 distributed across London, with 100,000 patients; 29 situated in the inner London Borough of Lambeth, with 200,000 patients). Ethics approvals were obtained to link individual primary-care records to modeled NOx concentrations by means of post-codes. (To preserve anonymity, the postcodes were removed before delivery to the research team.) A wide range of NOx exposures was found across London as well as within and between the practices examined. Although we observed little association between NOx exposure and smoking status, a positive relationship was found between exposure and increased socioeconomic deprivation. The health outcomes we chose to study were asthma, chronic obstructive pulmonary disease, wheeze, hay fever, upper and lower respiratory tract infections, ischemic heart disease, heart failure, and atrial fibrillation. These outcomes were measured as prevalence or incidence. Their distributions by age, sex, socioeconomic deprivation, ethnicity, and smoking were found to accord with those reported in the epidemiology literature. No cross-sectional positive associations were found between exposure to NOx and any of the studied health outcomes; some associations were significantly negative. After the pilot study, a suitable primary-care database of London patients was identified, the General Practice Research Database responsible for giving us access to these data agreed to collaborate in the evaluation of the LEZ, and an acceptable method of ensuring privacy of the records was agreed upon. The database included about 350,000 patients who had remained at the same address over the four-year period of the study. Power calculations for a controlled longitudinal analysis were then performed, indicating that for outcomes such as consultations for respiratory illnesses or prescriptions for asthma there was sufficient power to identify a 5% to 10% reduction in consultations for patients most exposed to the intervention compared with patients presumed to not be exposed to it. In conclusion, the work undertaken in this study provides a good foundation for future LEZ evaluations. Our extensive monitoring network, measuring a comprehensive set of pollutants (and a range of particle metrics), will continue to provide a valuable tool both for assessing the impact of LEZ regulations on air quality in London and for furthering understanding of the link between PM's composition and toxicity. Finally, we believe that in combination with our modeling of the predicted population-based changes in pollution exposure in London, the use of primary-care databases forms a sound basis and has sufficient statistical power for the evaluation of the potential impact of the LEZ on human health.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise , Emissões de Veículos/análise , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos Transversais , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Feminino , Nível de Saúde , Humanos , Lactente , Londres , Estudos Longitudinais , Masculino , Metais/análise , Pessoa de Meia-Idade , Projetos Piloto , Atenção Primária à Saúde/estatística & dados numéricos , Análise de Pequenas Áreas , Fumar , Fatores Socioeconômicos , Adulto Jovem
11.
Stroke ; 41(5): 869-77, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20339125

RESUMO

BACKGROUND AND PURPOSE: The impact of air pollution on survival after stroke is unknown. We examined the impact of outdoor air pollution on stroke survival by studying a population-based cohort. METHODS: All patients who experienced their first-ever stroke between 1995 and 2005 in a geographically defined part of London, where road traffic contributes to spatial variation in air pollution, were followed up to mid-2006. Outdoor concentrations of nitrogen dioxide and particulate matter <10 microm in diameter modeled at a 20-m grid point resolution for 2002 were linked to residential postal codes. Hazard ratios were adjusted for age, sex, social class, ethnicity, smoking, alcohol consumption, prestroke functional ability, pre-existing medical conditions, stroke subtype and severity, hospital admission, and neighborhood socioeconomic deprivation. RESULTS: There were 1856 deaths among 3320 patients. Median survival was 3.7 years (interquartile range, 0.1 to 10.8). Mean exposure levels were 41 microg/m(3) (SD, 3.3; range, 32.2 to 103.2) for nitrogen dioxide and 25 microg/m(3) (SD, 1.3; range, 22.7 to 52) for particulate matter <10 microm in diameter. A 10-microg/m(3) increase in nitrogen dioxide was associated with a 28% (95% CI, 11% to 48%) increase in risk of death. A 10-microg/m(3) increase in particulate matter <10 mum in diameter was associated with a 52% (6% to 118%) increase in risk of death. Reduced survival was apparent throughout the follow-up period, ruling out short-term mortality displacement. CONCLUSIONS: Survival after stroke was lower among patients living in areas with higher levels of outdoor air pollution. If causal, a 10-microg/m(3) reduction in nitrogen dioxide exposure might be associated with a reduction in mortality comparable to that for stroke units. Improvements in outdoor air quality might contribute to better survival after stroke.


Assuntos
Poluentes Atmosféricos/intoxicação , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Acidente Vascular Cerebral/mortalidade , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Seguimentos , Humanos , Londres/epidemiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/etiologia , Taxa de Sobrevida/tendências , Emissões de Veículos/intoxicação
12.
Lancet ; 374(9705): 1930-43, 2009 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19942277

RESUMO

We used Comparative Risk Assessment methods to estimate the health effects of alternative urban land transport scenarios for two settings-London, UK, and Delhi, India. For each setting, we compared a business-as-usual 2030 projection (without policies for reduction of greenhouse gases) with alternative scenarios-lower-carbon-emission motor vehicles, increased active travel, and a combination of the two. We developed separate models that linked transport scenarios with physical activity, air pollution, and risk of road traffic injury. In both cities, we noted that reduction in carbon dioxide emissions through an increase in active travel and less use of motor vehicles had larger health benefits per million population (7332 disability-adjusted life-years [DALYs] in London, and 12 516 in Delhi in 1 year) than from the increased use of lower-emission motor vehicles (160 DALYs in London, and 1696 in Delhi). However, combination of active travel and lower-emission motor vehicles would give the largest benefits (7439 DALYs in London, 12 995 in Delhi), notably from a reduction in the number of years of life lost from ischaemic heart disease (10-19% in London, 11-25% in Delhi). Although uncertainties remain, climate change mitigation in transport should benefit public health substantially. Policies to increase the acceptability, appeal, and safety of active urban travel, and discourage travel in private motor vehicles would provide larger health benefits than would policies that focus solely on lower-emission motor vehicles.


Assuntos
Efeito Estufa/prevenção & controle , Saúde da População Urbana , Emissões de Veículos/prevenção & controle , Poluição do Ar/prevenção & controle , Comportamento , Humanos , Índia , Londres , Veículos Automotores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA