Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 7(78): eabq2061, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36490327

RESUMO

Emergency hematopoiesis is a concerted response aimed toward enhanced protection from infection, involving multiple cell types and developmental stages across the immune system. Despite its importance, the underlying molecular regulation remains poorly understood. The deubiquitinase USP22 regulates the levels of monoubiquitinated histone H2B (H2Bub1), which is associated with activation of interferon responses upon viral infection. Here, we show that in the absence of infection or inflammation, mice lacking Usp22 in all hematopoietic cells display profound systemic emergency hematopoiesis, evident by increased hematopoietic stem cell proliferation, myeloid bias, and extramedullary hematopoiesis. Functionally, loss of Usp22 results in elevated phagocytosis by neutrophilic granulocytes and enhanced innate protection against Listeria monocytogenes infection. At the molecular level, we found this state of emergency hematopoiesis associated with transcriptional signatures of myeloid priming, enhanced mitochondrial respiration, and innate and adaptive immunity and inflammation. Augmented expression of many inflammatory genes was linked to elevated locus-specific H2Bub1 levels. Collectively, these results demonstrate the existence of a tunable epigenetic state that promotes systemic emergency hematopoiesis in a cell-autonomous manner to enhance innate protection, identifying potential paths toward immune enhancement.


Assuntos
Hematopoese , Listeriose , Animais , Camundongos , Hematopoese/genética , Ubiquitinação , Histonas/metabolismo , Inflamação
3.
Cell Death Differ ; 27(4): 1328-1340, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31527800

RESUMO

USP22, the deubiquitinating subunit of the SAGA transcriptional cofactor complex, is a member of an 11-gene "death-from-cancer" signature. USP22 has been considered an attractive therapeutic target since high levels of its expression were associated with distant metastasis, poor survival, and high recurrence rates in a wide variety of solid tumors, including colorectal cancer (CRC). We sought to investigate the role of Usp22 during tumorigenesis in vivo using a mouse model for intestinal carcinogenesis with a tissue-specific Usp22 ablation. In addition, we assessed the effects of USP22 depletion in human CRC cells on tumorigenic potential and identified underlying molecular mechanisms. For the first time, we report that USP22 has an unexpected tumor-suppressive function in vivo. Intriguingly, intestine-specific Usp22 deletion exacerbated the tumor phenotype caused by Apc mutation, resulting in significantly decreased survival and higher intestinal tumor incidence. Accordingly, human CRC cells showed increased tumorigenic properties upon USP22 reduction in vitro and in vivo and induced gene expression signatures associated with an unfavorable outcome in CRC patients. Notably, USP22 loss resulted in increased mTOR activity with the tumorigenic properties elicited by the loss of USP22 being reversible by mTOR inhibitor treatment in vitro and in vivo. Here, we demonstrate that USP22 can exert tumor-suppressive functions in CRC where its loss increases CRC burden by modulating mTOR activity. Importantly, our data uncover a tumor- and context-specific role of USP22, suggesting that USP22 expression could serve as a marker for therapeutic stratification of cancer patients.


Assuntos
Neoplasias Colorretais/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Deleção de Genes , Células HCT116 , Humanos , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ubiquitina Tiolesterase/deficiência
4.
Oncotarget ; 6(35): 37906-18, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26431380

RESUMO

Epigenetic regulatory mechanisms play a central role in controlling gene expression during development, cell differentiation and tumorigenesis. Monoubiquitination of histone H2B is one epigenetic modification which is dynamically regulated by the opposing activities of specific ubiquitin ligases and deubiquitinating enzymes (DUBs). The Ubiquitin-specific Protease 22 (USP22) is the ubiquitin hydrolase component of the human SAGA complex which deubiquitinates histone H2B during transcription. Recently, many studies have investigated an oncogenic potential of USP22 overexpression. However, its physiological function in organ maintenance, development and its cellular function remain largely unknown. A previous study reported embryonic lethality in Usp22 knockout mice. Here we describe a mouse model with a global reduction of USP22 levels which expresses the LacZ gene under the control of the endogenous Usp22 promoter. Using this reporter we found Usp22 to be ubiquitously expressed in murine embryos. Notably, adult Usp2(2lacZ/lacZ) displayed low residual Usp22 expression levels coupled with a reduced body size and weight. Interestingly, the reduction of Usp22 significantly influenced the frequency of differentiated cells in the small intestine and the brain while H2B and H2Bub1 levels remained constant. Taken together, we provide evidence for a physiological role for USP22 in controlling cell differentiation and lineage specification.


Assuntos
Encéfalo/patologia , Diferenciação Celular , Linhagem da Célula , Embrião de Mamíferos/patologia , Células-Tronco Embrionárias/patologia , Endopeptidases/fisiologia , Células Epiteliais/patologia , Intestino Delgado/patologia , Animais , Western Blotting , Encéfalo/metabolismo , Células Cultivadas , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Humanos , Técnicas Imunoenzimáticas , Hibridização In Situ , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina/metabolismo , Ubiquitina Tiolesterase , Ubiquitinação
5.
PLoS One ; 8(5): e63745, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717473

RESUMO

Unlike other metazoan mRNAs, replication-dependent histone gene transcripts are not polyadenylated but instead have a conserved stem-loop structure at their 3' end. Our previous work has shown that under certain conditions replication-dependent histone genes can produce alternative transcripts that are polyadenylated at the 3' end and, in some cases, spliced. A number of microarray studies examining the expression of polyadenylated mRNAs identified changes in the levels of histone transcripts e.g. during differentiation and tumorigenesis. However, it remains unknown which histone genes produce polyadenylated transcripts and which conditions regulate this process. In the present study we examined the expression and polyadenylation of the human histone H2B gene complement in various cell lines. We demonstrate that H2B genes display a distinct expression pattern that is varies between different cell lines. Further we show that the fraction of polyadenylated HIST1H2BD and HIST1H2AC transcripts is increased during differentiation of human mesenchymal stem cells (hMSCs) and human fetal osteoblast (hFOB 1.19). Furthermore, we observed an increased fraction of polyadenylated transcripts produced from the histone genes in cells following ionizing radiation. Finally, we show that polyadenylated transcripts are transported to the cytoplasm and found on polyribosomes. Thus, we propose that the production of polyadenylated histone mRNAs from replication-dependent histone genes is a regulated process induced under specific cellular circumstances.


Assuntos
Histonas/genética , RNA Mensageiro/genética , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Citoplasma/genética , Replicação do DNA/genética , Expressão Gênica/genética , Células HCT116 , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Polirribossomos/genética , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/genética , Regulação para Cima/genética
6.
Cancer Cell ; 23(1): 93-106, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23273920

RESUMO

Loss of p53 is considered to allow progression of colorectal tumors from the adenoma to the carcinoma stage. Using mice with an intestinal epithelial cell (IEC)-specific p53 deletion, we demonstrate that loss of p53 alone is insufficient to initiate intestinal tumorigenesis but markedly enhances carcinogen-induced tumor incidence and leads to invasive cancer and lymph node metastasis. Whereas p53 controls DNA damage and IEC survival during the initiation stage, loss of p53 during tumor progression is associated with increased intestinal permeability, causing formation of an NF-κB-dependent inflammatory microenvironment and the induction of epithelial-mesenchymal transition. Thus, we propose a p53-controlled tumor-suppressive function that is independent of its well-established role in cell-cycle regulation, apoptosis, and senescence.


Assuntos
Carcinógenos/toxicidade , Neoplasias Colorretais/patologia , Linfonodos/patologia , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Adenoma/induzido quimicamente , Adenoma/genética , Adenoma/patologia , Animais , Carcinoma/induzido quimicamente , Carcinoma/genética , Carcinoma/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Camundongos , Mutagênese Sítio-Dirigida , Invasividade Neoplásica/genética , Metástase Neoplásica
7.
Mol Cell ; 46(5): 705-13, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22681891

RESUMO

Extensive changes in posttranslational histone modifications accompany the rewiring of the transcriptional program during stem cell differentiation. However, the mechanisms controlling the changes in specific chromatin modifications and their function during differentiation remain only poorly understood. We show that histone H2B monoubiquitination (H2Bub1) significantly increases during differentiation of human mesenchymal stem cells (hMSCs) and various lineage-committed precursor cells and in diverse organisms. Furthermore, the H2B ubiquitin ligase RNF40 is required for the induction of differentiation markers and transcriptional reprogramming of hMSCs. This function is dependent upon CDK9 and the WAC adaptor protein, which are required for H2B monoubiquitination. Finally, we show that RNF40 is required for the resolution of the H3K4me3/H3K27me3 bivalent poised state on lineage-specific genes during the transition from an inactive to an active chromatin conformation. Thus, these data indicate that H2Bub1 is required for maintaining multipotency of hMSCs and plays a central role in controlling stem cell differentiation.


Assuntos
Diferenciação Celular/genética , Histonas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Linhagem Celular , Montagem e Desmontagem da Cromatina , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
8.
J Clin Invest ; 122(6): 2283-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22622037

RESUMO

Telomere shortening limits the proliferative capacity of a cell, but perhaps surprisingly, shortening is also known to be associated with increased rates of tumor initiation. A current hypothesis suggests that telomere dysfunction increases tumor initiation by induction of chromosomal instability, but that initiated tumors need to reactivate telomerase for genome stabilization and tumor progression. This concept has not been tested in vivo, since appropriate mouse models were lacking. Here, we analyzed hepatocarcinogenesis in a mouse model of inducible telomere dysfunction on a telomerase-proficient background, in telomerase knockout mice with chronic telomere dysfunction (G3 mTerc-/-), and in WT mice with functional telomeres and telomerase. Transient or chronic telomere dysfunction enhanced the rates of chromosomal aberrations during hepatocarcinogenesis, but only telomerase-proficient mice exhibited significantly increased rates of macroscopic tumor formation in response to telomere dysfunction. In contrast, telomere dysfunction resulted in pronounced accumulation of DNA damage, cell-cycle arrest, and apoptosis in telomerase-deficient liver tumors. Together, these data provide in vivo evidence that transient telomere dysfunction during early or late stages of tumorigenesis promotes chromosomal instability and carcinogenesis in telomerase-proficient mice.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Transformação Celular Neoplásica/metabolismo , Instabilidade Cromossômica , Neoplasias Hepáticas/enzimologia , RNA/metabolismo , Telomerase/metabolismo , Telômero/enzimologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Dano ao DNA , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Knockout , RNA/genética , Telomerase/genética , Telômero/genética
9.
Gastroenterology ; 142(5): 1229-1239.e3, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22342966

RESUMO

BACKGROUND & AIMS: p53 limits the self-renewal of stem cells from various tissues. Loss of p53, in combination with other oncogenic events, results in aberrant self-renewal and transformation of progenitor cells. It is not known whether loss of p53 is sufficient to induce tumor formation in liver. METHODS: We used AlfpCre mice to create mice with liver-specific disruption of Trp53 (AlfpCre(+)Trp53(Δ2-10/Δ2-10) mice). We analyzed colony formation and genomic features and gene expression patterns in liver cells during hepatocarcinogenesis in mice with homozygous, heterozygous, and no disruption of Trp53. RESULTS: Liver-specific disruption of Trp53 consistently induced formation of liver carcinomas that had bilineal differentiation. In nontransformed liver cells and cultured primary liver cells, loss of p53 (but not p21) resulted in chromosomal imbalances and increased clonogenic capacity of liver progenitor cells (LPCs) and hepatocytes. Primary cultures of hepatocytes and LPCs from AlfpCre(+)Trp53(Δ2-10/Δ2-10) mice, but not Cdkn1a(-/-) mice, formed tumors with bilineal differentiation when transplanted into immunocompromised mice. Spontaneous liver tumors that developed in AlfpCre(+)Trp53(Δ2-10/Δ2-10) mice had significant but complex alterations in expression of Rb checkpoint genes compared with chemically induced liver tumors that developed mice with wild-type Trp53. CONCLUSIONS: Deletion of p53 from livers of mice is sufficient to induce tumor formation. The tumors have bilineal differentiation and dysregulation of Rb checkpoint genes.


Assuntos
Neoplasias Hepáticas Experimentais/etiologia , Fígado/patologia , Proteína Supressora de Tumor p53/fisiologia , Envelhecimento , Animais , Diferenciação Celular , Transformação Celular Neoplásica , Instabilidade Cromossômica , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Genes do Retinoblastoma , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL
10.
Nat Cell Biol ; 14(1): 73-9, 2011 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22138576

RESUMO

The tumour suppressor p53 activates Puma-dependent apoptosis and p21-dependent cell-cycle arrest in response to DNA damage. Deletion of p21 improved stem-cell function and organ maintenance in progeroid mice with dysfunctional telomeres, but the function of Puma has not been investigated in this context. Here we show that deletion of Puma improves stem- and progenitor-cell function, organ maintenance and lifespan of telomere-dysfunctional mice. Puma deletion impairs the clearance of stem and progenitor cells that have accumulated DNA damage as a consequence of critically short telomeres. However, further accumulation of DNA damage in these rescued progenitor cells leads to increasing activation of p21. RNA interference experiments show that upregulation of p21 limits proliferation and evolution of chromosomal imbalances of Puma-deficient stem and progenitor cells with dysfunctional telomeres. These results provide experimental evidence that p53-dependent apoptosis and cell-cycle arrest act in cooperating checkpoints limiting tissue maintenance and evolution of chromosomal instability at stem- and progenitor-cell levels in response to telomere dysfunction. Selective inhibition of Puma-dependent apoptosis can result in temporary improvements in maintenance of telomere-dysfunctional organs.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Instabilidade Cromossômica , Inibidor de Quinase Dependente de Ciclina p21/genética , Células-Tronco/fisiologia , Telômero/genética , Proteínas Supressoras de Tumor/genética , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Processos de Crescimento Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Células-Tronco/metabolismo , Telômero/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
11.
PLoS One ; 6(11): e27801, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110763

RESUMO

Atrophy of the olfactory epithelium (OE) associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging) on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc(-/-)) with short telomeres compared to wild type mice (mTerc(+/+)) with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc(-/-) mice compared to mTerc(+/+) mice. Seven days after chemical induced damage, G3 mTerc(-/-) mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc(+/+) mice (p = 0.031). Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21) rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people.


Assuntos
Mucosa Olfatória/lesões , Mucosa Olfatória/fisiopatologia , Regeneração/genética , Encurtamento do Telômero , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Técnicas de Inativação de Genes , Homeostase/efeitos dos fármacos , Homeostase/genética , Camundongos , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/patologia , Regeneração/efeitos dos fármacos , Encurtamento do Telômero/efeitos dos fármacos
12.
Cancer Res ; 71(17): 5739-53, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21862633

RESUMO

The estrogen receptor-α (ERα) determines the phenotype of breast cancers where it serves as a positive prognostic indicator. ERα is a well-established target for breast cancer therapy, but strategies to target its function remain of interest to address therapeutic resistance and further improve treatment. Recent findings indicate that proteasome inhibition can regulate estrogen-induced transcription, but how ERα function might be regulated was uncertain. In this study, we investigated the transcriptome-wide effects of the proteasome inhibitor bortezomib on estrogen-regulated transcription in MCF7 human breast cancer cells and showed that bortezomib caused a specific global decrease in estrogen-induced gene expression. This effect was specific because gene expression induced by the glucocorticoid receptor was unaffected by bortezomib. Surprisingly, we observed no changes in ERα recruitment or assembly of its transcriptional activation complex on ERα target genes. Instead, we found that proteasome inhibition caused a global decrease in histone H2B monoubiquitination (H2Bub1), leading to transcriptional elongation defects on estrogen target genes and to decreased chromatin dynamics overall. In confirming the functional significance of this link, we showed that RNA interference-mediated knockdown of the H2B ubiquitin ligase RNF40 decreased ERα-induced gene transcription. Surprisingly, RNF40 knockdown also supported estrogen-independent cell proliferation and activation of cell survival signaling pathways. Most importantly, we found that H2Bub1 levels decrease during tumor progression. H2Bub1 was abundant in normal mammary epithelium and benign breast tumors but absent in most malignant and metastatic breast cancers. Taken together, our findings show how ERα activity is blunted by bortezomib treatment as a result of reducing the downstream ubiquitin-dependent function of H2Bub1. In supporting a tumor suppressor role for H2Bub1 in breast cancer, our findings offer a rational basis to pursue H2Bub1-based therapies for future management of breast cancer.


Assuntos
Neoplasias da Mama/genética , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Neoplasias Hormônio-Dependentes/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Ácidos Borônicos/farmacologia , Bortezomib , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Hormônio-Dependentes/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Pirazinas/farmacologia , Transcrição Gênica/efeitos dos fármacos
13.
Nat Genet ; 41(10): 1138-43, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19718028

RESUMO

Telomere dysfunction limits the proliferative capacity of human cells and induces organismal aging by activation of p53 and p21. Although deletion of p21 elongates the lifespan of telomere-dysfunctional mice, a direct analysis of p53 in telomere-related aging has been hampered by early tumor formation in p53 knockout mice. Here we analyzed the functional consequences of conditional p53 deletion. Intestinal deletion of p53 shortened the lifespan of telomere-dysfunctional mice without inducing tumor formation. In contrast to p21 deletion, the deletion of p53 impaired the depletion of chromosomal-instable intestinal stem cells in aging telomere-dysfunctional mice. These instable stem cells contributed to epithelial regeneration leading to an accumulation of chromosomal instability, increased apoptosis, altered epithelial cell differentiation and premature intestinal failure. Together, these results provide the first experimental evidence for an organ system in which p53-dependent mechanisms prevent tissue destruction in response to telomere dysfunction by depleting genetically instable stem cells.


Assuntos
Envelhecimento/fisiologia , Instabilidade Cromossômica , Deleção de Genes , Células-Tronco/metabolismo , Telômero/genética , Proteína Supressora de Tumor p53/deficiência , Animais , Ciclo Celular , Dano ao DNA , Genoma , Mucosa Intestinal/metabolismo , Intestinos/citologia , Camundongos , Camundongos Knockout , Células-Tronco/citologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA