Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10063, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698187

RESUMO

Ultra high frequency (UHF) ultrasound enables the visualization of very small structures that cannot be detected by conventional ultrasound. The utilization of UHF imaging as a new imaging technique for the 3D-in-vivo chorioallantoic membrane (CAM) model can facilitate new insights into tissue perfusion and survival. Therefore, human renal cystic tissue was grafted onto the CAM and examined using UHF ultrasound imaging. Due to the unprecedented resolution of UHF ultrasound, it was possible to visualize microvessels, their development, and the formation of anastomoses. This enabled the observation of anastomoses between human and chicken vessels only 12 h after transplantation. These observations were validated by 3D reconstructions from a light sheet microscopy image stack, indocyanine green angiography, and histological analysis. Contrary to the assumption that the nutrient supply of the human cystic tissue and the gas exchange happens through diffusion from CAM vessels, this study shows that the vasculature of the human cystic tissue is directly connected to the blood vessels of the CAM and perfusion is established within a short period. Therefore, this in-vivo model combined with UHF imaging appears to be the ideal platform for studying the effects of intravenously applied therapeutics to inhibit renal cyst growth.


Assuntos
Membrana Corioalantoide , Rim Policístico Autossômico Dominante , Ultrassonografia , Animais , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/diagnóstico por imagem , Humanos , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Ultrassonografia/métodos , Galinhas , Rim/diagnóstico por imagem , Rim/irrigação sanguínea , Imageamento Tridimensional/métodos
2.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698920

RESUMO

Superficial erythematous cutaneous vascular malformations are assumed to be blood vascular in origin, but cutaneous lymphatic malformations can contain blood and appear red. Management may be different and so an accurate diagnosis is important. Cutaneous malformations were investigated through 2D histology and 3D whole-mount histology. Two lesions were clinically considered as port-wine birthmarks and another 3 lesions as erythematous telangiectasias. The aims were (i) to demonstrate that cutaneous erythematous malformations including telangiectasia can represent a lymphatic phenotype, (ii) to determine if lesions represent expanded but otherwise normal or malformed lymphatics, and (iii) to determine if the presence of erythrocytes explained the red color. Microscopy revealed all lesions as lymphatic structures. Port-wine birthmarks proved to be cystic lesions, with nonuniform lymphatic marker expression and a disconnected lymphatic network suggesting a lymphatic malformation. Erythematous telangiectasias represented expanded but nonmalformed lymphatics. Blood within lymphatics appeared to explain the color. Blood-lymphatic shunts could be detected in the erythematous telangiectasia. In conclusion, erythematous cutaneous capillary lesions may be lymphatic in origin but clinically indistinguishable from blood vascular malformations. Biopsy is advised for correct phenotyping and management. Erythrocytes are the likely explanation for color accessing lymphatics through lympho-venous shunts.


Assuntos
Telangiectasia , Malformações Vasculares , Humanos , Malformações Vasculares/diagnóstico , Capilares , Veias , Telangiectasia/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA