Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936440

RESUMO

One of the most striking features occurring in the root-knot nematode Meloidogyne incognita induced galls is the reorganization of the vascular tissues. During the interaction of the model tree species Populus and M. incognita, a pronounced xylem proliferation was previously described in mature galls. To better characterise changes in expression of genes possibly involved in the induction and the formation of the de novo developed vascular tissues occurring in poplar galls, a comparative transcript profiling of 21-day-old galls versus uninfected root of poplar was performed. Genes coding for transcription factors associated with procambium maintenance and vascular differentiation were shown to be differentially regulated, together with genes partaking in phytohormones biosynthesis and signalling. Specific signatures of transcripts associated to primary cell wall biosynthesis and remodelling, as well as secondary cell wall formation (cellulose, xylan and lignin) were revealed in the galls. Ultimately, we show that molecules derived from the monolignol and salicylic acid pathways and related to secondary cell wall deposition accumulate in mature galls.


Assuntos
Interações Hospedeiro-Patógeno/genética , Modelos Biológicos , Raízes de Plantas/parasitologia , Tumores de Planta/parasitologia , Feixe Vascular de Plantas/crescimento & desenvolvimento , Populus/genética , Populus/parasitologia , Tylenchoidea/fisiologia , Animais , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Lignina/metabolismo , Floema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Tumores de Planta/genética , Feixe Vascular de Plantas/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Xilema/metabolismo
2.
J Agric Food Chem ; 61(5): 1036-43, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23356506

RESUMO

Rapid and direct, in situ headspace screening for odoriferous volatile organic compounds (VOCs) present in fresh grapes and in wines is a very promising method for quality control because the economic value of a wine is closely related to its aroma. Long used for the detection of VOCs in complex mixtures, miniature differential ion mobility spectrometry (DMS) seems therefore adequate for in situ trace detection of many kinds of VOCs of concern appearing in the headspace of selected foodstuffs. This work aims at a rapid detection, identification, and quantification of some natural and volatile contaminants of wine such as geosmin, 2-methylisoborneol (2-MIB), 1-octen-3-ol, 1-octen-3-one, and pyrazines (2-isopropyl-3-methoxypyrazine, IPMP, and 3-isobutyl-2-methoxypyrazine, IBMP). In the present study, these compounds were spiked at a known concentration in wine and analyzed with a hyphenated trap-GC-DMS device. The detection of all target compounds at concentrations below the human olfactory threshold was demonstrated.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Vinho/análise , Canfanos/análise , Humanos , Cetonas/análise , Naftóis/análise , Octanóis/análise , Olfatometria , Pirazinas/análise , Olfato , Vitis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA