Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131596

RESUMO

Inference of gene regulatory networks (GRNs) can reveal cell state transitions from single-cell genomics data. However, obstacles to temporal inference from snapshot data are difficult to overcome. Single-nuclei multiomics data offer means to bridge this gap and derive temporal information from snapshot data using joint measurements of gene expression and chromatin accessibility in the same single cells. We developed popInfer to infer networks that characterize lineage-specific dynamic cell state transitions from joint gene expression and chromatin accessibility data. Benchmarking against alternative methods for GRN inference, we showed that popInfer achieves higher accuracy in the GRNs inferred. popInfer was applied to study single-cell multiomics data characterizing hematopoietic stem cells (HSCs) and the transition from HSC to a multipotent progenitor cell state during murine hematopoiesis across age and dietary conditions. From networks predicted by popInfer, we discovered gene interactions controlling entry to/exit from HSC quiescence that are perturbed in response to diet or aging.

2.
Environ Epigenet ; 6(1): dvaa013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33214908

RESUMO

Human histone H1.5, in mice called H1b, belongs to the family of linker histones (H1), which are key players in chromatin organization. These proteins sit on top of nucleosomes, in part to stabilize them, and recruit core histone modifying enzymes. Through subtype-specific deposition patterns and numerous post-translational modifications, they fine-tune gene expression and chromatin architecture, and help to control cell fate and homeostasis. However, even though it is increasingly implicated in mammalian development, H1.5 has not received as much research attention as its relatives. Recent studies have focused on its prognostic value in cancer patients and its contribution to tumorigenesis through specific molecular mechanisms. However, many functions of H1.5 are still poorly understood. In this review, we will summarize what is currently known about H1.5 and its function in cell differentiation and carcinogenesis. We will suggest key experiments that are required to understand the molecular network, in which H1.5 is embedded. These experiments will advance our understanding of the epigenetic reprogramming occurring in developmental and carcinogenic processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA