Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501393

RESUMO

Geminivirus beet curly top Iran virus (BCTIV) is one of the main causal agents of the beet curly top disease in Iran and the newly established Becurtovirus genus type species. Although the biological features of known becurtoviruses are similar to those of curtoviruses, they only share a limited sequence identity, and no information is available on the function of their viral genes. In this work, we demonstrate that BCTIV V2, as the curtoviral V2, is also a local silencing suppressor in Nicotiana benthamiana and can delay the systemic silencing spreading, although it cannot block the cell-to-cell movement of the silencing signal to adjacent cells. BCTIV V2 shows the same subcellular localization as curtoviral V2, being detected in the nucleus and perinuclear region, and its ectopic expression from a PVX-derived vector also causes the induction of necrotic lesions in N. benthamiana, such as the ones produced during the HR, both at the local and systemic levels. The results from the infection of N. benthamiana with a V2 BCTIV mutant showed that V2 is required for systemic infection, but not for viral replication, in a local infection. Considering all these results, we can conclude that BCTIV V2 is a functional homologue of curtoviral V2 and plays a crucial role in viral pathogenicity and systemic movement.

2.
Mol Plant Microbe Interact ; 34(9): 1001-1009, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34110257

RESUMO

ER bodies are endoplasmic reticulum-derived organelles present in plants belonging to the Brassicales order. In Arabidopsis thaliana, ER bodies are ubiquitous in cotyledons and roots and are present only in certain cell types in rosette leaves. However, both wounding and jasmonic acid treatment induce the formation of ER bodies in leaves. Formation of this structure is dependent on the transcription factor NAI1. The main components of the ER bodies are ß-glucosidases (BGLUs), enzymes that hydrolyze specialized compounds. In Arabidopsis, PYK10 (BGLU23) and BGLU18 are the most abundant ER body proteins. In this work, we found that ER bodies are downregulated as a consequence of the immune responses induced by bacterial flagellin perception. Arabidopsis mutants defective in ER body formation show enhanced responses upon flagellin perception and enhanced resistance to bacterial infections. Furthermore, the bacterial toxin coronatine induces the formation of de novo ER bodies in leaves and its virulence function is partially dependent on this structure. Finally, we show that performance of the polyphagous beet armyworm herbivore Spodoptera exigua increases in plants lacking ER bodies. Altogether, we provide new evidence for the role of the ER bodies in plant immune responses.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Pseudomonas syringae/metabolismo
3.
Front Plant Sci ; 11: 835, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636860

RESUMO

Geminiviruses are single-stranded DNA plant viruses with circular genomes packaged within geminate particles. Among the Geminiviridae family, Begomovirus and Curtovirus comprise the two best characterized genera. Curtovirus and Old World begomovirus possess similar genome structures with six to seven open-reading frames (ORF). Among them, begomovirus and curtovirus V2 ORFs share the same location in the viral genome, encode proteins of similar size, but show extremely poor sequence homology between the genera. V2 from Beet curly top virus (BCTV), the model species for the Curtovirus genus, as it begomoviral counterpart, suppresses post-transcriptional gene silencing (PTGS) by impairing the RDR6/SGS3 pathway and localizes in the nucleus spanning from the perinuclear region to the cell periphery. By aminoacid sequence comparison we have identified that curtoviral and begomoviral V2 proteins shared two hydrophobic domains and a putative phosphorylation motif. These three domains are essential for BCTV V2 silencing suppression activity, for the proper nuclear localization of the protein and for systemic infection. The lack of suppression activity in the mutated versions of V2 is complemented by the impaired function of RDR6 in Nicotiana benthamiana but the ability of the viral mutants to produce a systemic infection is not recovered in gene silencing mutant backgrounds. We have also demonstrated that, as its begomoviral homolog, V2 from BCTV is able to induce systemic symptoms and necrosis associated with a hypersensitive response-like (HR-like) when expressed from Potato virus X vector in N. benthamiana, and that this pathogenicity activity does not dependent of its ability to supress PTGS.

4.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842320

RESUMO

Geminiviruses are single-stranded DNA (ssDNA) viruses that infect a wide range of plants. To promote viral replication, geminiviruses manipulate the host cell cycle. The viral protein Rep is essential to reprogram the cell cycle and then initiate viral DNA replication by interacting with a plethora of nuclear host factors. Even though many protein domains of Rep have been characterized, little is known about its nuclear targeting. Here, we show that one conserved lysine in the N-terminal part of Rep is pivotal for nuclear localization of the Rep protein from Tomato yellow leaf curl virus (TYLCV), with two other lysines also contributing to its nuclear import. Previous work had identified that these residues are essential for Rep from Tomato golden mosaic virus (TGMV) to interact with the E2 SUMO-conjugating enzyme (SCE1). We here show that mutating these lysines leads to nuclear exclusion of TYLCV Rep without compromising its interaction with SCE1. Moreover, the ability of TYLCV Rep to promote viral DNA replication also depends on this highly conserved lysine independently of its role in nuclear import of Rep. Our data thus reveal that this lysine potentially has a broad role in geminivirus replication, but its role in nuclear import and SCE1 binding differs depending on the Rep protein examined.IMPORTANCE Nuclear activity of the replication initiator protein (Rep) of geminiviruses is essential for viral replication. We now define that one highly conserved lysine is important for nuclear import of Rep from three different begomoviruses. To our knowledge, this is the first time that nuclear localization has been mapped for any geminiviral Rep protein. Our data add another key function to this lysine residue, besides its roles in viral DNA replication and interaction with host factors, such as the SUMO E2-conjugating enzyme.


Assuntos
Begomovirus/metabolismo , Geminiviridae/metabolismo , Replicação Viral/genética , Sequência de Aminoácidos/genética , Begomovirus/patogenicidade , DNA Viral/metabolismo , Geminiviridae/patogenicidade , Lisina/metabolismo , Sinais de Localização Nuclear/genética , Ligação Proteica/genética , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
5.
J Exp Bot ; 69(19): 4633-4649, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30053161

RESUMO

Post-translational modifiers such as the small ubiquitin-like modifier (SUMO) peptide act as fast and reversible protein regulators. Functional characterization of the sumoylation machinery has determined the key regulatory role that SUMO plays in plant development. Unlike components of the SUMO conjugation pathway, SUMO proteases (ULPs) are encoded by a relatively large gene family and are potential sources of specificity within the pathway. This study reports a thorough comparative genomics and phylogenetic characterization of plant ULPs, revealing the presence of one ULP1-like and three ULP2-like SUMO protease subgroups within plant genomes. As representatives of an under-studied subgroup, Arabidopsis SPF1 and SPF2 were subjected to functional characterization. Loss-of-function mutants implicated both proteins with vegetative growth, flowering time, and seed size and yield. Mutants constitutively accumulated SUMO conjugates, and yeast complementation assays associated these proteins with the function of ScUlp2 but not ScUlp1. Fluorescence imaging placed both proteins in the plant cell nucleoplasm. Transcriptomics analysis indicated strong regulatory involvement in secondary metabolism, cell wall remodelling, and nitrate assimilation. Furthermore, developmental defects of the spf1-1 spf2-2 (spf1/2) double-mutant opposed those of the major E3 ligase siz1 mutant and, most significantly, developmental and transcriptomic characterization of the siz1 spf1/2 triple-mutant placed SIZ1 as epistatic to SPF1 and SPF2.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cisteína Endopeptidases/genética , Ligases/genética , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Ligases/metabolismo , Filogenia , Alinhamento de Sequência , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(6): 1388-1393, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29363594

RESUMO

RNA interference (RNAi) in plants can move from cell to cell, allowing for systemic spread of an antiviral immune response. How this cell-to-cell spread of silencing is regulated is currently unknown. Here, we describe that the C4 protein from Tomato yellow leaf curl virus can inhibit the intercellular spread of RNAi. Using this viral protein as a probe, we have identified the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1) as a positive regulator of the cell-to-cell movement of RNAi, and determined that BAM1 and its closest homolog, BAM2, play a redundant role in this process. C4 interacts with the intracellular domain of BAM1 and BAM2 at the plasma membrane and plasmodesmata, the cytoplasmic connections between plant cells, interfering with the function of these RLKs in the cell-to-cell spread of RNAi. Our results identify BAM1 as an element required for the cell-to-cell spread of RNAi and highlight that signaling components have been coopted to play multiple functions in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Proteínas Virais/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Begomovirus/química , Interações Hospedeiro-Patógeno/genética , Células Vegetais , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Nicotiana/genética , Proteínas Virais/metabolismo
7.
Bio Protoc ; 8(12): e2894, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34286003

RESUMO

Agrobacterium-mediated transient expression has greatly contributed to research in molecular plant biology but has low efficiency and inconsistency in Arabidopsis thaliana (Arabidopsis). Here, we describe a simple, efficient and fast protocol to make transient gene expression in NahG Arabidopsis plants using Agrobacterium tumefaciens. This protocol has been successfully used to assess protein sub-cellular localization and accumulation, enzyme activity, and protein-protein interaction. In addition, this assay overcomes the use of Nicotiana benthamiana plants as a surrogate system for transient gene expression assays. Finally, the use of this protocol does not require complex inoculation methods or specific growth conditions, and can be used with different Agrobacterium strains with similar results.

8.
Plant Physiol ; 162(4): 2015-27, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23784464

RESUMO

Cyanide is produced concomitantly with ethylene biosynthesis. Arabidopsis (Arabidopsis thaliana) detoxifies cyanide primarily through the enzyme ß-cyanoalanine synthase, mainly by the mitochondrial CYS-C1. CYS-C1 loss of function is not toxic for the plant and leads to an increased level of cyanide in cys-c1 mutants as well as a root hairless phenotype. The classification of genes differentially expressed in cys-c1 and wild-type plants reveals that the high endogenous cyanide content of the cys-c1 mutant is correlated with the biotic stress response. Cyanide accumulation and CYS-C1 gene expression are negatively correlated during compatible and incompatible plant-bacteria interactions. In addition, cys-c1 plants present an increased susceptibility to the necrotrophic fungus Botrytis cinerea and an increased tolerance to the biotrophic Pseudomonas syringae pv tomato DC3000 bacterium and Beet curly top virus. The cys-c1 mutation produces a reduction in respiration rate in leaves, an accumulation of reactive oxygen species, and an induction of the alternative oxidase AOX1a and pathogenesis-related PR1 expression. We hypothesize that cyanide, which is transiently accumulated during avirulent bacterial infection and constitutively accumulated in the cys-c1 mutant, uncouples the respiratory electron chain dependent on the cytochrome c oxidase, and this uncoupling induces the alternative oxidase activity and the accumulation of reactive oxygen species, which act by stimulating the salicylic acid-dependent signaling pathway of the plant immune system.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/imunologia , Cianetos/metabolismo , Cisteína Sintase/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Vegetal/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , Botrytis/patogenicidade , Cisteína Sintase/metabolismo , Resistência à Doença , Geminiviridae/patogenicidade , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Hidroxocobalamina/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mutação , Oxirredutases/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Mol Plant Microbe Interact ; 26(9): 1004-15, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23697374

RESUMO

In plants, post-transcriptional gene silencing (PTGS) is a sequence-specific mechanism of RNA degradation induced by double-stranded RNA (dsRNA), which is processed into small interfering RNAs (siRNAs). siRNAs are methylated and, thereby, stabilized by the activity of the S-adenosylmethionine-dependent RNA methyltransferase HEN1. PTGS is amplified by host-encoded RNA-dependent RNA polymerases (RDR), which generate dsRNA that is processed into secondary siRNAs. To counteract this RNA silencing-mediated response of the host, plant viruses express proteins with silencing suppression activity. Here, we report that the coat protein (CP) of crinivirus (family Closteroviridae, genus Crinivirus) Tomato chlorosis virus, a known suppressor of silencing, interacts with S-adenosylhomocysteine hydrolase (SAHH), a plant protein essential for sustaining the methyl cycle and S-adenosylmethionine-dependent methyltransferase activity. Our results show that, by contributing to an increased accumulation of secondary siRNAs generated by the action of RDR6, SAHH enhances local RNA silencing. Although downregulation of SAHH prevents local silencing, it enhances the spread of systemic silencing. Our results also show that SAHH is important in the suppression of local RNA silencing not only by the crinivirus Tomato chlorosis virus CP but also by the multifunctional helper component-proteinase of the potyvirus Potato virus Y.


Assuntos
Adenosil-Homocisteinase/metabolismo , Proteínas do Capsídeo/metabolismo , Crinivirus/fisiologia , Regulação da Expressão Gênica de Plantas , Nicotiana/enzimologia , Doenças das Plantas/imunologia , Adenosil-Homocisteinase/genética , Proteínas do Capsídeo/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Regulação para Baixo , Interações Hospedeiro-Patógeno , Metilação , Doenças das Plantas/virologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potyvirus/fisiologia , Interferência de RNA , RNA de Plantas/genética , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
New Phytol ; 199(2): 464-475, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23614786

RESUMO

Cytosine methylation is an epigenetic mark that promotes gene silencing and plays an important role in genome defence against transposons and invading DNA viruses. Previous data showed that the largest family of single-stranded DNA viruses, Geminiviridae, prevents methylation-mediated transcriptional gene silencing (TGS) by interfering with the proper functioning of the plant methylation cycle. Here, we describe a novel counter-defence strategy used by geminiviruses, which reduces the expression of the plant maintenance DNA methyltransferases, METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE 3 (CMT3), in both locally and systemically infected tissues. We demonstrated that the virus-mediated repression of these two maintenance DNA methyltransferases is widespread among geminivirus species. Additionally, we identified Rep (Replication associated protein) as the geminiviral protein responsible for the repression of MET1 and CMT3, and another viral protein, C4, as an ancillary player in MET1 down-regulation. The presence of Rep suppressed TGS of an Arabidopsis thaliana transgene and of host loci whose expression was strongly controlled by CG methylation. Bisulfite sequencing analyses showed that the expression of Rep caused a substantial reduction in the levels of DNA methylation at CG sites. Our findings suggest that Rep, the only viral protein essential for replication, displays TGS suppressor activity through a mechanism distinct from that thus far described for geminiviruses.


Assuntos
Arabidopsis/virologia , Metilação de DNA/genética , DNA de Plantas/genética , Geminiviridae/metabolismo , Inativação Gênica , Transcrição Gênica , Proteínas Virais/metabolismo , Arabidopsis/genética , Citosina/metabolismo , DNA de Plantas/metabolismo , DNA-Citosina Metilases/genética , DNA-Citosina Metilases/metabolismo , Regulação para Baixo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Supressão Genética , Nicotiana/enzimologia , Nicotiana/genética
11.
Mol Plant Microbe Interact ; 25(10): 1294-306, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22712505

RESUMO

Tomato yellow leaf curl disease (TYLCD) is caused by a complex of phylogenetically related Begomovirus spp. that produce similar symptoms when they infect tomato plants but have different host ranges. In this work, we have evaluated the gene-silencing-suppression activity of C2, C4, and V2 viral proteins isolated from the four main TYLCD-causing strains in Spain in Nicotiana benthamiana. We observed varying degrees of local silencing suppression for each viral protein tested, with V2 proteins from all four viruses exhibiting the strongest suppression activity. None of the suppressors were able to avoid the spread of the systemic silencing, although most produced a delay. In order to test the silencing-suppression activity of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) proteins in a shared (tomato) and nonshared (bean) host, we established novel patch assays. Using these tools, we found that viral proteins from TYLCV were able to suppress silencing in both hosts, whereas TYLCSV proteins were only effective in tomato. This is the first time that viral suppressors from a complex of disease-causing geminiviruses have been subject to a comprehensive analysis using two economically important crop hosts, as well as the established N. benthamiana plant model.


Assuntos
Begomovirus/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , Nicotiana/virologia , Vírus de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/virologia , Begomovirus/genética , Evolução Biológica , Clonagem Molecular , Vírus de Plantas/genética , Plantas Geneticamente Modificadas , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
New Phytol ; 194(3): 846-858, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22404507

RESUMO

• Geminiviruses are plant viruses with circular, single-stranded (ss) DNA genomes that infect a wide range of species and cause important losses in agriculture. Geminiviruses do not encode their own DNA polymerase, and rely on the host cell machinery for their replication. • Here, we identify a positive effect of the curtovirus Beet curly top virus (BCTV) on the begomovirus Tomato yellow leaf curl Sardinia virus (TYLCSV) infection in Nicotiana benthamiana plants. • Our results show that this positive effect is caused by the promotion of TYLCSV replication by BCTV C2. Transcriptomic analyses of plants expressing C2 unveil an up-regulation of cell cycle-related genes induced on cell cycle re-entry; experiments with two mutated versions of C2 indicate that this function resides in the N-terminal part of C2, which is also sufficient to enhance geminiviral replication. Moreover, C2 expression promotes the replication of other geminiviral species, but not of RNA viruses. • We conclude that BCTV C2 has a novel function in the promotion of viral replication, probably by restoring the DNA replication competency of the infected cells and thus creating a favourable cell environment for viral spread. Because C2 seems to have a broad impact on the replication of geminiviruses, this mechanism might have important epidemiological implications.


Assuntos
Beta vulgaris/virologia , Geminiviridae/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Proteínas Virais/metabolismo , Begomovirus/genética , Begomovirus/fisiologia , Ciclo Celular/genética , Replicação do DNA/genética , DNA Viral/genética , Geminiviridae/fisiologia , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/virologia , Transcriptoma , Regulação para Cima/genética , Proteínas Virais/genética , Replicação Viral/genética
13.
PLoS One ; 6(7): e22383, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21818318

RESUMO

Geminiviruses, like all viruses, rely on the host cell machinery to establish a successful infection, but the identity and function of these required host proteins remain largely unknown. Tomato yellow leaf curl Sardinia virus (TYLCSV), a monopartite geminivirus, is one of the causal agents of the devastating Tomato yellow leaf curl disease (TYLCD). The transgenic 2IRGFP N. benthamiana plants, used in combination with Virus Induced Gene Silencing (VIGS), entail an important potential as a tool in reverse genetics studies to identify host factors involved in TYLCSV infection. Using these transgenic plants, we have made an accurate description of the evolution of TYLCSV replication in the host in both space and time. Moreover, we have determined that TYLCSV and Tobacco rattle virus (TRV) do not dramatically influence each other when co-infected in N. benthamiana, what makes the use of TRV-induced gene silencing in combination with TYLCSV for reverse genetic studies feasible. Finally, we have tested the effect of silencing candidate host genes on TYLCSV infection, identifying eighteen genes potentially involved in this process, fifteen of which had never been implicated in geminiviral infections before. Seven of the analyzed genes have a potential anti-viral effect, whereas the expression of the other eleven is required for a full infection. Interestingly, almost half of the genes altering TYLCSV infection play a role in postranslational modifications. Therefore, our results provide new insights into the molecular mechanisms underlying geminivirus infections, and at the same time reveal the 2IRGFP/VIGS system as a powerful tool for functional reverse genetics studies.


Assuntos
Geminiviridae/fisiologia , Interações Hospedeiro-Patógeno/genética , Nicotiana/genética , Nicotiana/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Genética Reversa/métodos , Clonagem Molecular , Inativação Gênica , Genes de Plantas/genética , Estudos de Associação Genética , Proteínas de Fluorescência Verde/metabolismo , Fenótipo , Plantas Geneticamente Modificadas
14.
J Virol ; 85(19): 9789-800, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21775461

RESUMO

Geminiviruses are small DNA viruses that replicate in nuclei of infected plant cells by using plant DNA polymerases. These viruses encode a protein designated AL1, Rep, or AC1 that is essential for viral replication. AL1 is an oligomeric protein that binds to double-stranded DNA, catalyzes the cleavage and ligation of single-stranded DNA, and induces the accumulation of host replication machinery. It also interacts with several host proteins, including the cell cycle regulator retinoblastoma-related protein (RBR), the DNA replication protein PCNA (proliferating cellular nuclear antigen), and the sumoylation enzyme that conjugates SUMO to target proteins (SUMO-conjugating enzyme [SCE1]). The SCE1-binding motif was mapped by deletion to a region encompassing AL1 amino acids 85 to 114. Alanine mutagenesis of lysine residues in the binding region either reduced or eliminated the interaction with SCE1, but no defects were observed for other AL1 functions, such as oligomerization, DNA binding, DNA cleavage, and interaction with AL3 or RBR. The lysine mutations reduced or abolished virus infectivity in plants and viral DNA accumulation in transient-replication assays, suggesting that the AL1-SCE1 interaction is required for viral DNA replication. Ectopic AL1 expression did not result in broad changes in the sumoylation pattern of plant cells, but specific changes were detected, indicating that AL1 modifies the sumoylation state of selected host proteins. These results established the importance of AL1-SCE1 interactions during geminivirus infection of plants and suggested that AL1 alters the sumoylation of selected host factors to create an environment suitable for viral infection.


Assuntos
Geminiviridae/patogenicidade , Interações Hospedeiro-Patógeno , Nicotiana/virologia , Mapeamento de Interação de Proteínas , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Análise Mutacional de DNA , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Deleção de Sequência , Proteínas Virais/genética
15.
Mol Plant Pathol ; 11(4): 441-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20618703

RESUMO

UNLABELLED: Tomato yellow leaf curl disease (TYLCD) is one of the most devastating viral diseases affecting tomato crops in tropical, subtropical and temperate regions of the world. Here, we focus on the interactions through recombination between the different begomovirus species causing TYLCD, provide an overview of the interactions with the cellular genes involved in viral replication, and highlight recent progress on the relationships between these viruses and their vector, the whitefly Bemisia tabaci. TAXONOMY: The tomato yellow leaf curl virus-like viruses (TYLCVs) are a complex of begomoviruses (family Geminiviridae, genus Begomovirus) including 10 accepted species: Tomato yellow leaf curl Axarquia virus (TYLCAxV), Tomato yellow leaf curl China virus (TYLCCNV), Tomato yellow leaf curl Guangdong virus (TYLCGuV), Tomato yellow leaf curl Indonesia virus (TYLCIDV), Tomato yellow leaf curl Kanchanaburi virus (TYLVKaV), Tomato yellow leaf curl Malaga virus (TYLCMalV), Tomato yellow leaf curl Mali virus (TYLCMLV), Tomato yellow leaf curl Sardinia virus (TYLCSV), Tomato yellow leaf curl Thailand virus (TYLCTHV), Tomato yellow leaf curl Vietnam virus (TYLCVNV) and Tomato yellow leaf curl virus(TYLCV). We follow the species demarcation criteria of the International Committee on Taxonomy of Viruses (ICTV), the most important of which is an 89% nucleotide identity threshold between full-length DNA-A component nucleotide sequences for begomovirus species. Strains of a species are defined by a 93% nucleotide identity threshold. HOST RANGE: The primary host of TYLCVs is tomato (Solanum lycopersicum), but they can also naturally infect other crops [common bean (Phaseolus vulgaris), sweet pepper (Capsicum annuum), chilli pepper (C. chinense) and tobacco (Nicotiana tabacum)], a number of ornamentals [petunia (Petuniaxhybrida) and lisianthus (Eustoma grandiflora)], as well as common weeds (Solanum nigrum and Datura stramonium). TYLCVs also infect the experimental host Nicotiana benthamiana. DISEASE SYMPTOMS: Infected tomato plants are stunted or dwarfed, with leaflets rolled upwards and inwards; young leaves are slightly chlorotic; in recently infected plants, fruits might not be produced or, if produced, are small and unmarketable. In common bean, some TYLCVs produce the bean leaf crumple disease, with thickening, epinasty, crumpling, blade reduction and upward curling of leaves, as well as abnormal shoot proliferation and internode reduction; the very small leaves result in a bushy appearance.


Assuntos
Begomovirus/fisiologia , Hemípteros/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Solanum lycopersicum/virologia , Animais
16.
J Virol ; 80(7): 3624-33, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16537630

RESUMO

A versatile green fluorescent protein (GFP) expression cassette containing the replication origins of the monopartite begomovirus Tomato yellow leaf curl Sardinia virus (TYLCSV) is described. Transgenic Nicotiana benthamiana plants containing one copy of the cassette stably integrated into their genome were superinfected with TYLCSV, which mobilized and replicated the cassette as an episomal replicon. The expression of the reporter gene (the GFP gene) was thereby modified. Whereas GFP fluorescence was dimmed in the intercostal areas, an increase of green fluorescence in veins of all leaves placed above the inoculation site, as well as in transport tissues of roots and stems, was observed. The release of episomal trans replicons from the transgene and the increase in GFP expression were dependent on the cognate geminiviral replication-associated protein (Rep) and required interaction between Rep and the intergenic region of TYLCSV. This expression system is able to monitor the replication status of TYLCSV in plants, as induction of GFP expression is only produced in those tissues where Rep is present. To further confirm this notion, the expression of a host factor required for geminivirus replication, the proliferating cellular nuclear antigen (PCNA) was transiently silenced. Inhibition of PCNA prevented GFP induction in veins and reduced viral DNA. We propose that these plants could be widely used to easily identify host factors required for geminivirus replication by virus-induced gene silencing.


Assuntos
Geminiviridae/fisiologia , Proteínas de Plantas/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , DNA Viral/genética , Geminiviridae/genética , Geminiviridae/metabolismo , Geminiviridae/patogenicidade , Inativação Gênica , Genes de Plantas , Genes Reporter , Genoma de Planta , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Cinética , Folhas de Planta/virologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plantas Tóxicas/genética , Plantas Tóxicas/virologia , Plasmídeos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Replicon , Nicotiana/genética , Nicotiana/virologia , Transgenes , Proteínas Virais/genética
17.
J Virol ; 78(19): 10715-23, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15367638

RESUMO

Since 1997 two distinct geminivirus species, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV), have caused a similar yellow leaf curl disease in tomato, coexisted in the fields of southern Spain, and very frequently doubly infected single plants. Tomatoes as well as experimental test plants (e.g., Nicotiana benthamiana) showed enhanced symptoms upon mixed infections under greenhouse conditions. Viral DNA accumulated to a similar extent in singly and doubly infected plants. In situ tissue hybridization showed TYLCSV and TYLCV DNAs to be confined to the phloem in both hosts, irrespective of whether they were inoculated individually or in combination. The number of infected nuclei in singly or doubly infected plants was determined by in situ hybridization of purified nuclei. The percentage of nuclei containing viral DNA (i.e., 1.4% in tomato or 6% in N. benthamiana) was the same in plants infected with either TYLCSV, TYLCV, or both. In situ hybridization of doubly infected plants, with probes that discriminate between both DNAs, revealed that at least one-fifth of infected nuclei harbored DNAs from both virus species. Such a high number of coinfected nuclei may explain why recombination between different geminivirus DNAs occurs frequently. The impact of these findings for epidemiology and for resistance breeding concerning tomato yellow leaf curl diseases is discussed.


Assuntos
Núcleo Celular/virologia , Geminiviridae/classificação , Geminiviridae/crescimento & desenvolvimento , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , DNA Viral/análise , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Hibridização In Situ , Recombinação Genética , Nicotiana/virologia
18.
Virology ; 312(2): 381-94, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12919743

RESUMO

Geminiviruses replicate their small, single-stranded DNA genomes in plant nuclei using host replication machinery. Similar to most dicotyledonous plant-infecting geminiviruses, Tomato yellow leaf curl Sardinia virus (TYLCSV) encodes a protein, REn, that enhances viral DNA accumulation through an unknown mechanism. Earlier studies showed that REn protein from another geminivirus, Tomato golden mosaic virus (TGMV), forms oligomers and interacts with Rep protein, the only viral protein essential for replication. It has been shown that both proteins from TGMV also interact with a plant homolog of the mammalian tumor suppressor retinoblastoma protein (RBR). By using yeast two-hybrid technology and the TYLCSV REn protein as bait, we have isolated three clones of the proliferating cell nuclear antigen (PCNA) of Arabidopsis thaliana, a ring-shaped protein that encircles DNA and plays an essential role in eukaryotic chromosomal DNA replication. We also demonstrate by the two-hybrid system and a pull-down assay that REn interacts with tomato PCNA (LePCNA). Analysis of truncated proteins has located the REn-binding domain of LePCNA between amino acids 132 and 187, whereas all REn deletions used abolished or decreased dramatically its ability to interact with PCNA. Tomato PCNA also interacts with TYLCSV Rep. We propose that the interaction between PCNA and REn/Rep takes place during virus infection, inducing the assembly of the plant replication complex (replisome) close to the virus origin of replication.


Assuntos
Geminiviridae/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Arabidopsis , Clonagem Molecular , DNA Complementar/genética , Teste de Complementação Genética , Solanum lycopersicum/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Schizosaccharomyces , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Proteínas Virais/química
19.
J Virol ; 77(12): 6785-98, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12767999

RESUMO

The replication-associated protein (Rep) of geminiviruses is involved in several biological processes brought about by the presence of distinct functional domains. Recently, we have exploited the multifunctional character of the Tomato yellow leaf curl Sardinia virus (TYLCSV) Rep to develop a molecular interference strategy to impair TYLCSV infection. We showed that transgenic expression of its N-terminal 210 amino acids (Rep-210) confers resistance to the homologous virus by inhibiting viral transcription and replication. We have now used biochemical and transgenic approaches to carry out a fuller investigation of the molecular resistance mechanisms in transgenic plants expressing Rep-210. We show that Rep-210 confers resistance through two distinct molecular mechanisms, depending on the challenging virus. Resistance to the homologous virus is achieved by the ability of Rep-210 to tightly inhibit C1 gene transcription, while that to heterologous virus is due to the interacting property of the Rep-210 oligomerization domain. Furthermore, we present evidence that in Rep-210-expressing plants, the duration of resistance is related to the ability of the challenging virus to shut off transgene expression by a posttranscriptional homology-dependent gene silencing mechanism. A model of Rep-210-mediated geminivirus resistance that takes transgene- and virus-mediated mechanisms into account is proposed.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA , Regulação para Baixo , Geminiviridae/patogenicidade , Interferência de RNA , Transativadores/metabolismo , Transgenes , Sequência de Bases , DNA Helicases/química , DNA Helicases/genética , Geminiviridae/genética , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Mutação , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Nicotiana/virologia , Transativadores/química , Transativadores/genética , Transcrição Gênica , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA