Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1283: 43-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25304204

RESUMO

Due to the unlimited proliferation capacity and the unique differentiation ability of pluripotent stem cells (PSCs), including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), large numbers of PSC-derived cell products are in demand for applications in drug screening, disease modeling, and especially cell therapy. In stem cell-based therapy, tracking transplanted cells with magnetic resonance imaging (MRI) has emerged as a powerful technique to reveal cell survival and distribution. This chapter illustrated the basic steps of labeling PSC-derived neural progenitors (NPs) with micron-sized particles of iron oxide (MPIO, 0.86 µm) for MRI analysis. The protocol described PSC expansion and differentiation into NPs, and the labeling of the derived cells either after replating on adherent surface or in suspension. The labeled cells can be analyzed using in vitro MRI analysis. The methods presented here can be easily adapted for cell labeling in cell processing facilities under current Good Manufacturing Practices (cGMP). The iron oxide-labeled NPs can be used for cellular monitoring of in vitro cultures and in vivo transplantation.


Assuntos
Diferenciação Celular , Rastreamento de Células/métodos , Compostos Férricos/metabolismo , Imageamento por Ressonância Magnética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Técnicas de Cultura de Células , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos
2.
Cytotherapy ; 17(1): 98-111, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25527864

RESUMO

BACKGROUND AIMS: Pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) represent an unlimited source for the treatment of various neurological disorders. NPCs are usually derived from PSCs through the formation of embryoid body (EB), an aggregate structure mimicking embryonic development. This study investigated the effect of labeling multicellular EB-NPC aggregates with micron-sized particles of iron oxide (MPIO) for cell tracking using magnetic resonance imaging (MRI). METHODS: Intact and dissociated EB-NPC aggregates were labeled with various concentrations of MPIOs (0, 2.5, 5 and 10 µg Fe/mL). The labeled cells were analyzed by fluorescent imaging, flow cytometry and in vitro MRI for labeling efficiency and detectability. Moreover, the biological effects of intracellular MPIO on cell viability, cytotoxicity, proliferation and neural differentiation were evaluated. RESULTS: Intact EB-NPC aggregates showed higher cell proliferation and viability compared with the dissociated cells. Despite diffusion limitation at low MPIO concentration, higher concentration of MPIO (i.e., 10 µg Fe/mL) was able to label EB-NPC aggregates at similar efficiency to the single cells. In vitro MRI showed concentration-dependent MPIO detection in EB-NPCs over 2.0-2.6 population doublings. More important, MPIO incorporation did not affect the proliferation and neural differentiation of EB-NPCs. CONCLUSIONS: Multicellular EB-NPC aggregates can be efficiently labeled and tracked with MPIO while maintaining cell proliferation, phenotype and neural differentiation potential. This study demonstrated the feasibility of labeling EB-NPC aggregates with MPIO for cellular monitoring of in vitro cultures and in vivo transplantation.


Assuntos
Células-Tronco Embrionárias/citologia , Compostos Férricos/farmacologia , Nanopartículas de Magnetita/administração & dosagem , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/citologia , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Rastreamento de Células/métodos , Células-Tronco Embrionárias/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Tamanho da Partícula , Coloração e Rotulagem/métodos
3.
Magn Reson Med ; 67(4): 1159-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21748798

RESUMO

Sodium and diffusion magnetic resonance imaging (MRI) in intracranial rat 9L gliomas were evaluated over 6-8 days using the advanced sensitivity of sodium MRI at 21.1 T. Glioma doubling time was 2.4-2.6 days. Glioma sodium signal was detected using the ultra-short echo time of 0.15 ms. The high resolution 3D sodium MRI with pixels of 0.125 µL allowed for minimizing a partial volume effect often relevant to the MRI of low intensity signals. Tumor sodium and diffusion MRI were evaluated for two separate subclones of 9L cells with different resistance to 1,3-bis(2-chloroethyl)-1-nitrosurea detected by pre-surgery assays. In vivo, after implantation, resistant 9L cells created tumors with significantly reduced sodium concentrations (57 ± 3 mM) compared with nonresistant 9L cells (78 ± 3 mM). The corresponding differences in diffusion were less, but also statistically significant. During tumor progression, an increase of glioma sodium concentration was observed in both cell types with a rate of 2.4-5.8 %/day relative to normal brain. Tumor diffusion was not significantly changed at this time, indicative of no alterations in glioma cellularity. Thus, changes in sodium during tumor progression reflect increasing intracellular sodium concentration and mounting metabolic stress. These experiments also demonstrate an enhanced sensitivity of sodium MRI to reflect tumor cell resistance.


Assuntos
Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Glioma/patologia , Animais , Neoplasias Encefálicas/metabolismo , Progressão da Doença , Glioma/metabolismo , Ratos , Sensibilidade e Especificidade , Sódio , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA