Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 1021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754179

RESUMO

Sclerotinia sclerotiorum is a characteristic necrotrophic plant pathogen and is dependent on the induction of host cell death for nutrient acquisition. To identify necrosis-inducing effectors, the genome of S. sclerotiorum was scanned for genes encoding small, secreted, cysteine-rich proteins. These potential effectors were tested for their ability to induce necrosis in Nicotiana benthamiana via Agrobacterium-mediated expression and for cellular localization in host cells. Six novel proteins were discovered, of which all but one required a signal peptide for export to the apoplast for necrotizing activity. Virus-induced gene silencing revealed that the five necrosis-inducing effectors with a requirement for secretion also required the plant co-receptor-like kinases Brassinosteroid Insensitive 1-Associated Receptor Kinase 1 (BAK1) and Suppressor of BAK1-Interacting Receptor-like Kinase 1 (SOBIR1) for the induction of necrosis. S. sclerotiorum necrosis-inducing effector 2 (SsNE2) represented a new class of necrosis-inducing proteins as orthologs were identified in several other phytopathogenic fungi that were also capable of inducing necrosis. Substitution of conserved cysteine residues with alanine reduced, but did not abolish, the necrotizing activity of SsNE2 and full-length protein was required for function as peptides spanning the entire protein were unable to induce necrosis. These results illustrate the importance of necrosis-inducing effectors for S. sclerotiorum virulence and the role of host extracellular receptor(s) in effector-triggered susceptibility to this pathogen.

2.
BMC Plant Biol ; 19(1): 292, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272394

RESUMO

BACKGROUND: The oilseed Camelina sativa is grown for a range of applications, including for biofuel, biolubricants, and as a source of omega-3 fatty acids for the aquaculture feed industry. The seed meal co-product is used as a source of protein for animal feed; however, the low value of the meal hinders profitability and more widespread application of camelina. The nutritional quality of the seed meal is largely determined by the abundance of specific seed storage proteins and their amino acid composition. Manipulation of seed storage proteins has been shown to be an effective means for either adjustment of nutritional content of seeds or for enhancing accumulation of high-value recombinant proteins in seeds. RESULTS: CRISPR/Cas9 gene editing technology was used to generate deletions in the first exon of the three homoeologous genes encoding the seed storage protein CRUCIFERIN C (CsCRUC), creating an identical premature stop-codon in each and resulting in a CsCRUC knockout line. The mutant alleles were detected by applying a droplet digital PCR drop-off assay. The quantitative nature of this technique is particularly valuable when applied to polyploid species because it can accurately determine the number of mutated alleles in a gene family. Loss of CRUC protein did not alter total seed protein content; however, the abundance of other cruciferin isoforms and other seed storage proteins was altered. Consequently, seed amino acid content was significantly changed with an increase in the proportion of alanine, cysteine and proline, and decrease of isoleucine, tyrosine and valine. CsCRUC knockout seeds did not have changed total oil content, but the fatty acid profile was significantly altered with increased relative abundance of all saturated fatty acids. CONCLUSIONS: This study demonstrates the plasticity of the camelina seed proteome and establishes a CRUC-devoid line, providing a framework for modifying camelina seed protein composition. The results also illustrate a possible link between the composition of the seed proteome and fatty acid profile.


Assuntos
Brassicaceae/genética , Globulinas/genética , Proteínas de Plantas/genética , Proteínas de Armazenamento de Sementes/genética , Sequência de Bases , Brassicaceae/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Globulinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética
3.
Plant Physiol Biochem ; 47(7): 653-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19345111

RESUMO

Gene redundancy due to polyploidization provides a selective advantage for plant adaptation. We examined the expression patterns of two peroxidase genes (BnPOX1 and BnPOX2) in the natural allotetraploid Brassica napus and the model diploid progenitors Brassica rapa (Br) and Brassica oleracea (Bo) in response to the fungal pathogen Sclerotinia sclerotiorum. We demonstrated that the Bo homeolog of BnPOX1 was up-regulated after infection, while both BnPOX2 homeologs were down-regulated. A bias toward reciprocal expression of the homeologs of BnPOX1 in different organs in the natural allotetraploid of B. napus was also observed. These results suggest that subfunctionalization of the duplicated BnPOX genes after B. napus polyploidization as well as subneofunctionalization of the homeologs in response to this specific biotic stress has occurred. Retention of expression patterns in the diploid progenitors and the natural allotetraploid in some organs indicates that the function of peroxidase genes has been conserved during evolution.


Assuntos
Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Genes Duplicados , Genes de Plantas , Peroxidase/genética , Doenças das Plantas/microbiologia , Ascomicetos , Brassica napus/metabolismo , Família Multigênica , Peroxidase/metabolismo , Doenças das Plantas/genética , Estruturas Vegetais , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA