Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 13(2): e031665, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38214284

RESUMO

BACKGROUND: Obesity is accompanied by dysregulated inflammation, which can contribute to vasculometabolic complications including metabolic syndrome and atherosclerosis. Recently, clonal hematopoiesis of indeterminate potential (CHIP) has emerged as a risk factor for cardiovascular diseases. We aimed to determine how CHIP is related to immune cell function, systemic inflammation, and vasculometabolic complications in obese individuals. METHODS AND RESULTS: Two hundred ninety-seven individuals with overweight and obesity, between the ages of 54 and 81 years, were recruited in a cross-sectional study. Clonal hematopoiesis driver mutations (CHDMs) were identified with an ultrasensitive targeted assay. Assessment of carotid artery atherosclerosis was performed with ultrasound. Detailed immunological parameters, including cytokine production capacity of peripheral blood mononuclear cells, and targeted plasma proteomics analysis, were studied. Adipose tissue inflammation was determined in subcutaneous fat biopsies. Individuals with CHIP had higher concentrations of circulating IL (interleukin)-6. Total number of leukocytes and neutrophils were higher in individuals with CHIP. In contrast, ex vivo cytokine production capacity of peripheral blood mononuclear cells was significantly lower in individuals with CHIP. Sex-stratified analysis showed that men with CHDMs had significantly higher leukocyte and neutrophil counts, and ex vivo cytokine production capacity was lower in women with CHDMs. Surprisingly, the presence of atherosclerotic plaques was significantly lower in individuals with CHDMs. There was no relation between CHIP and metabolic syndrome. CONCLUSIONS: In individuals with overweight or obesity, CHDMs are not associated with vasculometabolic complications, but rather with a lower presence of carotid plaques. CHDMs associate with increased circulating inflammatory markers and leukocyte numbers, but a lower peripheral blood mononuclear cell cytokine production capacity.


Assuntos
Aterosclerose , Síndrome Metabólica , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Hematopoiese Clonal , Síndrome Metabólica/complicações , Síndrome Metabólica/genética , Leucócitos Mononucleares/metabolismo , Estudos Transversais , Sobrepeso/metabolismo , Hematopoese/genética , Obesidade/complicações , Obesidade/genética , Inflamação/metabolismo , Aterosclerose/metabolismo , Interleucina-6/metabolismo , Mutação
2.
Cardiovasc Res ; 119(18): 2774-2786, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795085

RESUMO

Low-grade systemic inflammation is a key pathophysiological component of atherosclerotic cardiovascular disease (CVD), and long-term activation of myeloid cells is thought to be crucial for these effects. Obesity and associated metabolic complications including hyperglycaemia and dyslipoproteinaemia can induce long-lasting inflammatory reprogramming of the innate immune cells and their bone marrow progenitors, which in turn contributes to atherosclerosis. In this review, we discuss the mechanisms through which innate immune cells undergo long-term changes in their functional, epigenetic, and metabolic characteristics upon even short-term exposure to endogenous ligands, a process also termed 'trained immunity'. Inappropriate induction of trained immunity leads to the development of long-lasting hyperinflammatory and proatherogenic changes in monocytes and macrophages, an important factor in the development of atherosclerosis and CVDs. Knowledge of the specific immune cells and the distinct intracellular molecular pathways involved in the induction of trained immunity will reveal novel pharmacological targets that could be used to prevent or treat CVDs in the future.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Imunidade Inata , Imunidade Treinada , Macrófagos/metabolismo , Monócitos/metabolismo , Aterosclerose/metabolismo , Doenças Cardiovasculares/metabolismo
3.
J Leukoc Biol ; 115(2): 374-384, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-37776323

RESUMO

Leptin is associated with cardiometabolic complications of obesity, such as metabolic syndrome and atherosclerosis. In obese men, the presence of metabolic syndrome is associated with higher circulating leptin and interleukin (IL)-6 concentrations and increased monocyte cytokine production capacity. Here, we investigated the effects of leptin on monocyte function and systemic inflammatory markers in obese individuals. We specifically explored whether leptin can induce long-term changes in innate immune function by inducing innate immune memory (also called trained immunity). We exposed human primary monocytes for 24 h to relevant leptin concentrations in vitro and measured cytokine production. In addition, after removing leptin, we incubated monocytes for 5 d in culture medium, and we restimulated them on day 6 to assess cytokine production capacity, phagocytosis, and foam cell formation. Direct stimulation with leptin did not induce cytokine production, but exposure to 50 ng/mL leptin augmented lipopolysaccharide- and R848-induced tumor necrosis factor α (TNF-α) production after 1 wk. In a separate in vivo study in a cohort of 302 obese subjects (body mass index [BMI] >27 kg/m2, 55 to 81 yr), we measured circulating leptin, inflammatory markers, and cytokine production upon ex vivo stimulation of isolated peripheral blood mononuclear cells. Circulating leptin concentrations positively correlated with circulating IL-1ß and IL-6, which was more pronounced in men than in women. Four single nucleotide polymorphisms in the leptin gene influenced circulating IL-6 concentrations in men, suggesting a direct effect of leptin on IL-6. In conclusion, in vitro, leptin does not directly stimulate monocytes to produce cytokines, yet induces long-term monocyte hyperresponsiveness, i.e. trained immunity. In obese subjects, leptin is associated with circulating IL-6 in a sex-dependent manner. The underlying mechanisms of the sex-specific effect of leptin on innate immune cells remain to be further investigated.


Assuntos
Leptina , Síndrome Metabólica , Masculino , Humanos , Feminino , Leptina/metabolismo , Imunidade Treinada , Interleucina-6 , Leucócitos Mononucleares/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Obesidade/complicações , Citocinas/metabolismo , Inflamação/metabolismo
4.
J Thromb Haemost ; 21(4): 744-757, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36696191

RESUMO

Antiphospholipid syndrome (APS) is a systemic autoimmune disease, where persistent presence of antiphospholipid antibodies (aPL) leads to thrombotic and obstetric complications. APS is a paradigmatic thromboinflammatory disease. Thromboinflammation is a pathophysiological mechanism coupling inflammation and thrombosis, which contributes to the pathophysiology of cardiovascular disease. APS can serve as a model to unravel mechanisms of thromboinflammation and the relationship between innate immune cells and thrombosis. Monocytes are activated by aPL into a proinflammatory and procoagulant phenotype, producing proinflammatory cytokines such as tumor necrosis factor α, interleukin 6, as well as tissue factor. Important cellular signaling pathways involved are the NF-κB-pathway, mammalian target of rapamycin (mTOR) signaling, and the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome. All of these may serve as future therapeutic targets. Neutrophils produce neutrophil extracellular traps in response to aPL, and this leads to thrombosis. Thrombosis in APS also stems from increased interaction of neutrophils with endothelial cells through P-selectin glycoprotein ligand-1. NETosis can be targeted not only with several experimental therapeutics, such as DNase, but also through the redirection of current therapies such as defibrotide and the antiplatelet agent dipyridamole. Activation of platelets by aPL leads to a procoagulant phenotype. Platelet-leukocyte interactions are increased, possibly mediated by increased levels of soluble P-selectin and soluble CD40-ligand. Platelet-directed future treatment options involve the inhibition of several platelet receptors activated by aPL, as well as mTOR inhibition. This review discusses mechanisms underlying thromboinflammation in APS that present targetable therapeutic options, some of which may be generalizable to other thromboinflammatory diseases.


Assuntos
Síndrome Antifosfolipídica , Trombose , Feminino , Gravidez , Humanos , Síndrome Antifosfolipídica/complicações , Síndrome Antifosfolipídica/tratamento farmacológico , Tromboinflamação , Células Endoteliais , Inflamação/tratamento farmacológico , Inflamação/complicações , Trombose/etiologia , Serina-Treonina Quinases TOR
5.
Front Immunol ; 13: 840751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860283

RESUMO

Background: Trained immunity - or innate immune memory - can be described as the long-term reprogramming of innate immune cells towards a hyperresponsive state which involves intracellular metabolic changes. Trained immunity has been linked to atherosclerosis. A subgroup of patients with primary Sjögren's syndrome (pSS) exhibits systemic type I interferon (IFN) pathway activation, indicating innate immune hyperactivation. Here, we studied the link between type I IFNs and trained immunity in an in vitro monocytic cell model and peripheral blood mononuclear cells (PBMCs) from pSS patients. Methods: The training stimuli heat killed Candida albicans, muramyl dipeptide, IFNß, and patient serum were added to THP-1 cells for 24 hours, after which the cells were washed, rested for 48 hours and subsequently re-stimulated with LPS, Pam3Cys, poly I:C, IFNß or oxLDL for 4-24 hours. PBMCs from pSS patients and healthy controls were stimulated with LPS, Pam3Cys, poly I:C or IFNß for 0.5-24 hours. Results: Training with IFNß induced elevated production of pro-atherogenic cytokines IL-6, TNFα and CCL2, differential cholesterol- and glycolysis-related gene expression, and increased glucose consumption and oxLDL uptake upon re-stimulation. Type I IFN production was increased in Candida albicans- and IFNß-trained cells after LPS re-stimulation, but was reduced after poly I:C re-stimulation. Training with muramyl dipeptide and IFNß, but not Candida albicans, affected the IFN-stimulated gene expression response to IFNß re-stimulation. PBMCs from pSS patients consumed more glucose compared with healthy control PBMCs and tended to produce more TNFα and type I IFNs upon LPS stimulation, but less type I IFNs upon poly I:C stimulation. Conclusions: Type I IFN is a trainer inducing a trained immunity phenotype with pro-atherogenic properties in monocytes. Conversely, trained immunity also affects the production of type I IFNs and transcriptional response to type I IFN receptor re-stimulation. The phenotype of pSS PBMCs is consistent with trained immunity. This connection between type I IFN, trained immunity and cholesterol metabolism may have important implications for pSS and the pathogenesis of (subclinical) atherosclerosis in these patients.


Assuntos
Aterosclerose , Interferon Tipo I , Síndrome de Sjogren , Acetilmuramil-Alanil-Isoglutamina , Aterosclerose/metabolismo , Glucose/metabolismo , Humanos , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/metabolismo , Fenótipo , Poli I/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Basic Res Cardiol ; 117(1): 28, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581364

RESUMO

Calcific aortic valve disease (CAVD) is the most common valvular disease in the developed world with currently no effective pharmacological treatment available. CAVD results from a complex, multifactorial process, in which valvular inflammation and fibro-calcific remodelling lead to valve thickening and cardiac outflow obstruction. The exact underlying pathophysiology of CAVD is still not fully understood, yet the development of CAVD shows many similarities with the pathophysiology of atherosclerotic cardiovascular disease (ASCVD), such as coronary artery disease. Innate immune cells play a crucial role in ASCVD and might also play a pivotal role in the development of CAVD. This review summarizes the current knowledge on the role of innate immune cells, both in the circulation and in the aortic valve, in the development of CAVD and the similarities and differences with ASCVD. Trained immunity and clonal haematopoiesis of indeterminate potential are proposed as novel immunological mechanisms that possibly contribute to the pathophysiology of CAVD and new possible treatment targets are discussed.


Assuntos
Estenose da Valva Aórtica , Aterosclerose , Doenças Cardiovasculares , Valva Aórtica/patologia , Calcinose , Humanos , Imunidade Inata
7.
Front Cardiovasc Med ; 9: 731325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211520

RESUMO

OBJECTIVE: Despite the advances in the control of traditional risk factors, coronary artery disease (CAD) remains the greatest cause of morbidity and mortality. Our aim was to establish the relation between plasma proteomics analysis and the risk of cardiovascular events in patients with stable CAD. MATERIALS AND METHODS: Patients with stable CAD and documented coronary atherosclerosis were screened for inclusion. Using proximity extension assays, 177 plasma proteins were simultaneously measured. The endpoint consisted of the first major adverse cardiovascular event (MACE) and was the composite of cardiovascular death, acute coronary syndrome, stroke, transient ischemic attack, or acute limb ischemia at 18 months follow-up. Cox proportional-hazards regression with adjustment for multiple comparisons was used to identify biomarkers for the outcomes of interest. RESULTS: The cohort consisted of 229 patients. Six mediators were associated with MACE (p < 0.001). For these markers, the risk of MACE was calculated: tumor necrosis factor receptor superfamily member 13B (HR = 1.65; 95% CI: 1.30-2.10), C-C motif chemokine-3 (HR = 1.57; 95% CI: 1.23-1.98), decorin (HR = 1.65; 95% CI: 1.26-2.16), fibroblast growth factor-23 (HR = 1.56; 95% CI: 1.23-1.99), tumor necrosis factor-related apoptosis-inducing ligand-receptor 2 (TRAIL-R2) (HR = 1.61; 95% CI: 1.23-2.11), and tumor necrosis factor receptor superfamily member 10A (HR = 1.69; 95% CI: 1.25-2.29). Except for TRAIL-R2, the other proteins were associated with MACE independent of age, sex, diabetes mellitus, or estimated glomerular filtration rate. CONCLUSIONS: In patients with stable CAD, five novel biomarkers were identified as independent risk factors for adverse outcomes. Novel biomarkers could represent pharmacological targets for the prevention of adverse cardiovascular events.

8.
Front Immunol ; 12: 695227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484192

RESUMO

Aims: Periodontitis is an independent risk factor for cardiovascular disease, but the mechanistic link is not fully understood. In atherosclerotic cardiovascular disease, monocytes can adopt a persistent hyperresponsive phenotype, termed trained immunity. We hypothesized that periodontitis-associated bacteria can induce trained immunity in monocytes, which subsequently accelerate atherosclerosis development. Materials and Methods: We combined in vitro experiments on human primary monocytes and in vivo techniques in patients with periodontitis to test this hypothesis. Adherent peripheral blood mononuclear cells (PBMCs) were transiently exposed in vitro to Porphyromonas gingivalis for 24 hours, and restimulated with lipopolysaccharide (LPS) or Pam3CysK4 (P3C) six days later, to measure interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) production. In an exploratory observational study, patients with severe periodontitis (63 ± 6 years, n=14) and control subjects with no-to-mild periodontitis (54 ± 10 years, n=14) underwent venipuncture and 2'-deoxy-2'-[18F]fluoro-D-glucose positron-emission-tomography ([18F]FDG PET/CT) scanning. Results: When adherent peripheral blood mononuclear cells (PBMCs) were transiently exposed in vitro to Porphyromonas gingivalis for 24 hours, and restimulated with LPS or P3C six days later, IL-6 and TNFα production was significantly increased (TNFα/P3C, p<0.01). Circulating leukocytes, IL-6 and interleukin-1 receptor antagonist (IL-1Ra) concentrations were generally higher in patients compared to controls (leukocytes: p<0.01; IL-6: p=0.08; IL-1Ra: p=0.10). Cytokine production capacity in PBMCs after 24h stimulation revealed no differences between groups. [18F]FDG PET/CT imaging showed a trend for increased [18F]FDG-uptake in the periodontium [mean standard uptake value (SUVmean), p=0.11] and in femur bone marrow (SUVmean, p=0.06), but no differences were observed for vascular inflammation. Positive correlations between severity of periodontitis, measured by The Dutch Periodontal Screening Index and pocket depth, with circulating inflammatory markers and tissue inflammation were found. Conclusions: P. gingivalis induces long-term activation of human monocytes in vitro (trained immunity). Patients with severe periodontitis did have signs of increased systemic inflammation and hematopoietic tissue activation. However, their circulating monocytes did not show a hyperresponsive phenotype. Together we suggest that trained immunity might contribute to local periodontal inflammation which warrants further investigation.


Assuntos
Aterosclerose/imunologia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Monócitos/imunologia , Periodontite/imunologia , Porphyromonas gingivalis/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Aterosclerose/microbiologia , Estudos de Casos e Controles , Células Cultivadas , Feminino , Interações Hospedeiro-Patógeno , Humanos , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/microbiologia , Periodontite/diagnóstico por imagem , Periodontite/metabolismo , Periodontite/microbiologia , Fenótipo , Porphyromonas gingivalis/patogenicidade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença
9.
Arterioscler Thromb Vasc Biol ; 41(1): 62-69, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147995

RESUMO

Atherosclerosis is characterized by incessant inflammation in the arterial wall in which monocytes and macrophages play a crucial role. During the past few years, it has been reported that cells from the innate immune system can develop a long-lasting proinflammatory phenotype after brief stimulation not only with microbial products but also endogenous atherogenic stimuli. This persistent hyperactivation of the innate immune system is termed trained immunity and can contribute to the pathophysiology of atherosclerosis. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs both in mature innate immune cells as well as their bone marrow progenitors. In addition to monocytes, other innate immune and nonimmune cells involved in different stages of atherosclerosis can develop comparable memory characteristics. This mechanism provides exciting novel pharmacological targets that can be used to prevent or treat cardiovascular diseases.


Assuntos
Aterosclerose/imunologia , Imunidade Inata , Memória Imunológica , Inflamação/imunologia , Monócitos/imunologia , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Placa Aterosclerótica , Transdução de Sinais
10.
Arterioscler Thromb Vasc Biol ; 41(1): 55-61, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33086868

RESUMO

Adaptive immune responses are characterized by antigen specificity and induction of lifelong immunologic memory. Recently, it has been reported that innate immune cells can also build immune memory characteristics-a process termed trained immunity. Trained immunity describes the persistent hyperresponsive phenotype that innate immune cells can develop after brief stimulation. Pathogenic stimuli such as microorganisms, and also endogenous molecules including uric acid, oxidized LDL (low-density lipoprotein), and catecholamines, are capable of inducing memory in monocytes and macrophages. While trained immunity provides favorable cross-protection in the context of infectious diseases, the heightened immune response can be maladaptive in diseases driven by chronic systemic inflammation, such as atherosclerosis. Trained immunity is maintained by distinct epigenetic and metabolic mechanisms and persists for at least several months in vivo due to reprogramming of myeloid progenitor cells. Additionally, certain nonimmune cells are also found to exhibit trained immunity characteristics. Thus, trained immunity presents an exciting framework to develop new approaches to vaccination and also novel pharmacological targets in the treatment of inflammatory diseases.


Assuntos
Doenças Transmissíveis/imunologia , Células-Tronco Hematopoéticas/imunologia , Imunidade Inata , Memória Imunológica , Inflamação/imunologia , Animais , Doenças Transmissíveis/genética , Doenças Transmissíveis/metabolismo , Metabolismo Energético , Epigênese Genética , Células-Tronco Hematopoéticas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Transdução de Sinais , Fatores de Tempo
11.
Elife ; 92020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168134

RESUMO

Atherosclerosis is the major cause of cardiovascular disease (CVD). Monocyte-derived macrophages are the most abundant immune cells in atherosclerotic plaques. In patients with atherosclerotic CVD, leukocytes have a hyperinflammatory phenotype. We hypothesize that immune cell reprogramming in these patients occurs at the level of myeloid progenitors. We included 13 patients with coronary artery disease due to severe atherosclerosis and 13 subjects without atherosclerosis in an exploratory study. Cytokine production capacity after ex vivo stimulation of peripheral blood mononuclear cells (MNCs) and bone marrow MNCs was higher in patients with atherosclerosis. In BM-MNCs this was associated with increased glycolysis and oxidative phosphorylation. The BM composition was skewed towards myelopoiesis and transcriptome analysis of HSC/GMP cell populations revealed enrichment of neutrophil- and monocyte-related pathways. These results show that in patients with atherosclerosis, activation of innate immune cells occurs at the level of myeloid progenitors, which adds exciting opportunities for novel treatment strategies.


Assuntos
Aterosclerose/metabolismo , Células da Medula Óssea/fisiologia , Técnicas de Reprogramação Celular , Doença da Artéria Coronariana/metabolismo , Leucócitos Mononucleares/fisiologia , Células Progenitoras Mieloides/fisiologia , Idoso , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade
13.
Cardiovasc Res ; 115(9): 1416-1424, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050710

RESUMO

Atherosclerosis is characterized by a persistent, low-grade inflammation of the arterial wall. Monocytes and monocyte-derived macrophages play a pivotal role in the various stages of atherosclerosis. In the past few years, metabolic reprogramming has been identified as an important controller of myeloid cell activation status. In addition, metabolic and epigenetic reprogramming are key regulatory mechanisms of trained immunity, which denotes the non-specific innate immune memory that can develop after brief stimulation of monocytes with microbial or non-microbial stimuli. In this review, we build the case that metabolic reprogramming of monocytes and macrophages, and trained immunity in particular, contribute to the pathophysiology of atherosclerosis. We discuss the specific metabolic adaptations, including changes in glycolysis, oxidative phosphorylation, and cholesterol metabolism, that have been reported in atherogenic milieus in vitro and in vivo. In addition, we will focus on the role of these metabolic pathways in the development of trained immunity.


Assuntos
Artérias/imunologia , Aterosclerose/imunologia , Metabolismo Energético/imunologia , Sistema Imunitário/imunologia , Imunidade Inata , Imunomodulação , Inflamação/imunologia , Animais , Artérias/metabolismo , Artérias/fisiopatologia , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/fisiopatologia , Memória Imunológica , Inflamação/metabolismo , Inflamação/fisiopatologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Placa Aterosclerótica , Transdução de Sinais
14.
Eur Heart J ; 39(38): 3521-3527, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-29069365

RESUMO

A large number of cardiovascular events are not prevented by current therapeutic regimens. In search for additional, innovative strategies, immune cells have been recognized as key players contributing to atherosclerotic plaque progression and destabilization. Particularly the role of innate immune cells is of major interest, following the recent paradigm shift that innate immunity, long considered to be incapable of learning, does exhibit immunological memory mediated via epigenetic reprogramming. Compelling evidence shows that atherosclerotic risk factors promote immune cell migration by pre-activation of circulating innate immune cells. Innate immune cell activation via metabolic and epigenetic reprogramming perpetuates a systemic low-grade inflammatory state in cardiovascular disease (CVD) that is also common in other chronic inflammatory disorders. This opens a new therapeutic area in which metabolic or epigenetic modulation of innate immune cells may result in decreased systemic chronic inflammation, alleviating CVD, and its co-morbidities.


Assuntos
Aterosclerose/imunologia , Reprogramação Celular , Epigênese Genética , Células-Tronco Hematopoéticas/imunologia , Imunidade Inata , Inflamação/imunologia , Monócitos/imunologia , Animais , Aterosclerose/diagnóstico por imagem , Doença Crônica , Humanos , Memória Imunológica , Inflamação/diagnóstico por imagem , Imagem Multimodal
15.
Arterioscler Thromb Vasc Biol ; 37(5): 969-975, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28336558

RESUMO

OBJECTIVE: Mendelian randomization studies revealed a causal role for remnant cholesterol in cardiovascular disease. Remnant particles accumulate in the arterial wall, potentially propagating local and systemic inflammation. We evaluated the impact of remnant cholesterol on arterial wall inflammation, circulating monocytes, and bone marrow in patients with familial dysbetalipoproteinemia (FD). APPROACH AND RESULTS: Arterial wall inflammation and bone marrow activity were measured using 18F-FDG PET/CT. Monocyte phenotype was assessed with flow cytometry. The correlation between remnant levels and hematopoietic activity was validated in the CGPS (Copenhagen General Population Study). We found a 1.2-fold increase of 18F-FDG uptake in the arterial wall in patients with FD (n=17, age 60±8 years, remnant cholesterol: 3.26 [2.07-5.71]) compared with controls (n=17, age 61±8 years, remnant cholesterol 0.29 [0.27-0.40]; P<0.001). Monocytes from patients with FD showed increased lipid accumulation (lipid-positive monocytes: Patients with FD 92% [86-95], controls 76% [66-81], P=0.001, with an increase in lipid droplets per monocyte), and a higher expression of surface integrins (CD11b, CD11c, and CD18). Patients with FD also exhibited monocytosis and leukocytosis, accompanied by a 1.2-fold increase of 18F-FDG uptake in bone marrow. In addition, we found a strong correlation between remnant levels and leukocyte counts in the CGPS (n=103 953, P for trend 5×10-276). In vitro experiments substantiated that remnant cholesterol accumulates in human hematopoietic stem and progenitor cells coinciding with myeloid skewing. CONCLUSIONS: Patients with FD have increased arterial wall and cellular inflammation. These findings imply an important inflammatory component to the atherogenicity of remnant cholesterol, contributing to the increased cardiovascular disease risk in patients with FD.


Assuntos
Artérias/imunologia , Arterite/imunologia , Colesterol/imunologia , Hiperlipoproteinemia Tipo III/imunologia , Imunidade Celular , Lipoproteínas/imunologia , Triglicerídeos/imunologia , Idoso , Artérias/diagnóstico por imagem , Artérias/metabolismo , Arterite/sangue , Arterite/diagnóstico por imagem , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Colesterol/sangue , Dinamarca , Feminino , Fluordesoxiglucose F18 , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hiperlipoproteinemia Tipo III/sangue , Hiperlipoproteinemia Tipo III/diagnóstico por imagem , Integrinas/imunologia , Integrinas/metabolismo , Lipoproteínas/sangue , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Fenótipo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Transdução de Sinais , Triglicerídeos/sangue
16.
Cell Metab ; 24(6): 807-819, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27866838

RESUMO

Induction of trained immunity (innate immune memory) is mediated by activation of immune and metabolic pathways that result in epigenetic rewiring of cellular functional programs. Through network-level integration of transcriptomics and metabolomics data, we identify glycolysis, glutaminolysis, and the cholesterol synthesis pathway as indispensable for the induction of trained immunity by ß-glucan in monocytes. Accumulation of fumarate, due to glutamine replenishment of the TCA cycle, integrates immune and metabolic circuits to induce monocyte epigenetic reprogramming by inhibiting KDM5 histone demethylases. Furthermore, fumarate itself induced an epigenetic program similar to ß-glucan-induced trained immunity. In line with this, inhibition of glutaminolysis and cholesterol synthesis in mice reduced the induction of trained immunity by ß-glucan. Identification of the metabolic pathways leading to induction of trained immunity contributes to our understanding of innate immune memory and opens new therapeutic avenues.


Assuntos
Epigênese Genética , Fumaratos/metabolismo , Glutamina/metabolismo , Imunidade Inata/genética , Colesterol/metabolismo , Glucose/metabolismo , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Tolerância Imunológica , Macrófagos/metabolismo , Modelos Biológicos , Via de Pentose Fosfato/genética , Proteólise
17.
Atherosclerosis ; 254: 228-236, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27764724

RESUMO

BACKGROUND AND AIMS: We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed 'trained immunity', and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis. METHODS: Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed. RESULTS: Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis. CONCLUSIONS: Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation.


Assuntos
Doença da Artéria Coronariana/imunologia , Epigênese Genética , Imunidade Inata , Idoso , Aterosclerose/patologia , Artérias Carótidas/patologia , Citocinas/metabolismo , Feminino , Glicólise , Histonas/metabolismo , Humanos , Inflamação , Lipoproteínas LDL/química , Macrófagos/metabolismo , Masculino , Metilação , Pessoa de Meia-Idade , Monócitos/citologia , Fenótipo , Placa Aterosclerótica/metabolismo
18.
Hepatology ; 62(6): 1710-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26174697

RESUMO

UNLABELLED: The role of Kupffer cells (KCs) in the pathophysiology of the liver has been firmly established. Nevertheless, KCs have been underexplored as a target for diagnosis and treatment of liver diseases owing to the lack of noninvasive diagnostic tests. We addressed the hypothesis that cholesteryl ester transfer protein (CETP) is mainly derived from KCs and may predict KC content. Microarray analysis of liver and adipose tissue biopsies, obtained from 93 obese subjects who underwent elective bariatric surgery, showed that expression of CETP is markedly higher in liver than adipose tissue. Hepatic expression of CETP correlated strongly with that of KC markers, and CETP messenger RNA and protein colocalized specifically with KCs in human liver sections. Hepatic KC content as well as hepatic CETP expression correlated strongly with plasma CETP concentration. Mechanistic and intervention studies on the role of KCs in determining the plasma CETP concentration were performed in a transgenic (Tg) mouse model expressing human CETP. Selective elimination of KCs from the liver in CETP Tg mice virtually abolished hepatic CETP expression and largely reduced plasma CETP concentration, consequently improving the lipoprotein profile. Conversely, augmentation of KCs after Bacille-Calemette-Guérin vaccination largely increased hepatic CETP expression and plasma CETP. Also, lipid-lowering drugs fenofibrate and niacin reduced liver KC content, accompanied by reduced plasma CETP concentration. CONCLUSIONS: Plasma CETP is predominantly derived from KCs, and plasma CETP level predicts hepatic KC content in humans.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Células de Kupffer/metabolismo , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade
19.
Clin Ther ; 37(4): 914-23, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25704108

RESUMO

PURPOSE: Atherosclerosis is characterized by a persistent inflammation of the arterial wall. Monocyte-derived macrophages are the most abundant immune cells in atherosclerotic plaques. After stimulation, monocytes can adopt a long-term proinflammatory phenotype. This nonspecific memory of innate immune cells is mediated by epigenetic reprogramming and has recently been termed "trained innate immunity." The goal of this study was to describe the potential role of trained immunity in the development of atherosclerosis and to discuss the potential clinical implications of this concept. METHODS: We performed a comprehensive literature search (PubMed) on the role of epigenetic programming of histones, and of trained immunity in particular, in atherogenesis. FINDINGS: In vitro studies demonstrate that modified LDL particles can induce a long-term proinflammatory phenotype in monocytes/macrophages by epigenetic reprogramming at the level of histone methylation. This scenario is associated with increased production of proatherogenic cytokines and chemokines and increased formation of foam cells. IMPLICATIONS: Preclinical evidence suggests that trained innate immunity may contribute to vascular wall inflammation in patients with risk factors for atherosclerosis. Epigenetic reprogramming is regulated by enzymes that are amenable to pharmacologic modulation. Therefore, this mechanism could be used to develop novel pharmacologic targets for the prevention or treatment of atherosclerotic vascular disease.


Assuntos
Aterosclerose/tratamento farmacológico , Macrófagos/metabolismo , Monócitos/metabolismo , Aterosclerose/imunologia , Citocinas/imunologia , Humanos , Imunidade Inata , Inflamação/imunologia , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/imunologia
20.
Arterioscler Thromb Vasc Biol ; 34(8): 1731-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24903093

RESUMO

OBJECTIVE: Although the role of monocytes in the pathogenesis of atherosclerosis is well established, the persistent vascular inflammation remains largely unexplained. Recently, our group reported that stimulation of monocytes with various microbial products can induce a long-lasting proinflammatory phenotype via epigenetic reprogramming, a process termed trained immunity. We now hypothesize that oxidized low-density lipoprotein (oxLDL) also induces a long-lasting proinflammatory phenotype in monocytes, which accelerates atherosclerosis by proinflammatory cytokine production and foam cell formation. APPROACH AND RESULTS: Isolated human monocytes were exposed for 24 hours to medium or oxLDL. After washing and resting for 6 days, the cells were exposed to toll-like receptor 2 and 4 agonists. Pre-exposure to oxLDL increased mRNA expression and protein formation on toll-like receptor 2 and 4 stimulation of several proatherogenic proteins, including interleukin-6, interleukin-18, interleukin-8, tumor necrosis factor-α, monocyte chemoattractant protein 1, and matrix metalloproteinase 2 and 9. In addition, foam cell formation was enhanced after oxLDL exposure, which was associated with an upregulation of scavenger receptors CD36 and scavenger receptor-A and downregulation of ATP-binding cassette transporters, ABCA1 and ABCG1. Chromatin immunoprecipitation performed 6 days after oxLDL stimulation demonstrated increased trimethylation of lysine 4 at histone 3 in promoter regions of tnfα, il-6, il-18, mcp-1, mmp2, mmp9, cd36, and sr-a. Finally, pretreatment of the monocytes with the histone methyltransferase inhibitor methylthioadenosine completely prevented the oxLDL-induced long-lasting proinflammatory phenotype. CONCLUSIONS: Brief exposure of monocytes to a low concentration of oxLDL induces a long-lasting proatherogenic macrophage phenotype via epigenetic histone modifications, characterized by increased proinflammatory cytokine production and foam cell formation.


Assuntos
Aterosclerose/metabolismo , Reprogramação Celular , Citocinas/metabolismo , Epigênese Genética , Células Espumosas/metabolismo , Mediadores da Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Monócitos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aterosclerose/genética , Aterosclerose/imunologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Citocinas/genética , Metilação de DNA , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Células Espumosas/efeitos dos fármacos , Células Espumosas/imunologia , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Fenótipo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA