Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Lipidol ; 16(3): 298-305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35379577

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is the most common genetic disorder associated with a high risk for premature atherosclerotic cardiovascular disease attributable to increased levels of LDL-cholesterol (LDL-C) from birth. FH is both underdiagnosed and undertreated. OBJECTIVE: We describe the clinical, biological, and genetic characteristics of 147 patients in France with clinical FH (including a group of 26 subjects aged < 20 years); we explore how best to detect patients with monogenic FH. METHODS: We retrospectively reviewed all available data on patients undergoing genetic tests for FH from 2009 to 2019. FH diagnoses were based on the Dutch Lipid Clinics Network (DLCN) scores of adults, and elevated LDL-C levels in subjects < 20 years of age. We evaluated LDLR, APOB, and PCSK9 status. RESULTS: The mutations of adults (in 25.6% of all adults) were associated with DLCN scores indicating "possible FH," "probable FH, and "definitive FH" at rates of 4%, 16%, and 53%, respectively. The areas under the ROC curves of the DLCN score and the maximum LDL-C level did not differ (p = 0.32). We found that the pediatric group evidenced more monogenic etiologies (77%, increasing to 91% when an elevated LDL-C level was combined with a family history of hypercholesterolemia and/or premature coronary artery disease). CONCLUSION: Diagnosis of monogenic FH may be optimized by screening children in terms of their LDL-C levels, associated with reverse-cascade screening of relatives when the children serve as index cases.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Adulto , Criança , LDL-Colesterol , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Pró-Proteína Convertase 9/genética , Estudos Retrospectivos , Adulto Jovem
2.
Eur J Hum Genet ; 26(12): 1784-1790, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30135486

RESUMO

X-linked dominant chondrodysplasia punctata (CDPX2 or Conradi-Hünermann-Happle syndrome, MIM #302960) is caused by mutations in the EBP gene. Affected female patients present with Blaschkolinear ichthyosis, coarse hair or alopecia, short stature, and normal psychomotor development. The disease is usually lethal in boys. Nevertheless, few male patients have been reported; they carry a somatic mosaicism in EBP or present with Klinefelter syndrome. Here, we report CDPX2 patients belonging to a three-generation family, carrying the splice variant c.301 + 5 G > C in intron 2 of EBP. The grandfather carries the variant as mosaic state and presents with short stature and mild ichthyosis. The mother also presents with short stature and mild ichthyosis and the female fetus with severe limb and vertebrae abnormalities and no skin lesions, with random X inactivation in both. This further characterizes the phenotypical spectrum of CDPX2, as well as intrafamilial variability, and raises the question of differential EBP mRNA splicing between the different target tissues.


Assuntos
Condrodisplasia Punctata/genética , Mutação , Fenótipo , Esteroide Isomerases/genética , Feto Abortado/anormalidades , Adulto , Condrodisplasia Punctata/patologia , Feminino , Humanos , Masculino , Linhagem , Splicing de RNA
3.
J Lipid Res ; 57(3): 482-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26802169

RESUMO

Autosomal dominant hypercholesterolemia (ADH) is a human disorder characterized phenotypically by isolated high-cholesterol levels. Mutations in the low density lipoprotein receptor (LDLR), APOB, and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes are well known to be associated with the disease. To characterize the genetic background associated with ADH in France, the three ADH-associated genes were sequenced in a cohort of 120 children and 109 adult patients. Fifty-one percent of the cohort had a possible deleterious variant in LDLR, 3.1% in APOB, and 1.7% in PCSK9. We identified 18 new variants in LDLR and 2 in PCSK9. Three LDLR variants, including two newly identified, were studied by minigene reporter assay confirming the predicted effects on splicing. Additionally, as recently an in-frame deletion in the APOE gene was found to be linked to ADH, the sequencing of this latter gene was performed in patients without a deleterious variant in the three former genes. An APOE variant was identified in three patients with isolated severe hypercholesterolemia giving a frequency of 1.3% in the cohort. Therefore, even though LDLR mutations are the major cause of ADH with a large mutation spectrum, APOE variants were found to be significantly associated with the disease. Furthermore, using structural analysis and modeling, the identified APOE sequence changes were predicted to impact protein function.


Assuntos
Apolipoproteínas B/genética , Hiperlipoproteinemia Tipo II/genética , Mutação , Adulto , Apolipoproteínas B/química , Apolipoproteínas E/genética , Criança , Estudos de Coortes , Éxons/genética , Feminino , França , Técnicas de Genotipagem , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Masculino , Modelos Moleculares , Fenótipo , Pró-Proteína Convertase 9/genética , Conformação Proteica em alfa-Hélice , Receptores de LDL/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA