Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 801764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372032

RESUMO

Chemotherapy has been used to inhibit cancer growth for decades, but emerging evidence shows it can affect the tumor stroma, unintentionally promoting cancer malignancy. After treatment of primary tumors, remaining drugs drain via lymphatics. Though all drugs interact with the lymphatics, we know little of their impact on them. Here, we show a previously unknown effect of platinums, a widely used class of chemotherapeutics, to directly induce systemic lymphangiogenesis and activation. These changes are dose-dependent, long-lasting, and occur in healthy and cancerous tissue in multiple mouse models of breast cancer. We found similar effects in human ovarian and breast cancer patients whose treatment regimens included platinums. Carboplatin treatment of healthy mice prior to mammary tumor inoculation increased cancer metastasis as compared to no pre-treatment. These platinum-induced phenomena could be blocked by VEGFR3 inhibition. These findings have implications for cancer patients receiving platinums and may support the inclusion of anti-VEGFR3 therapy into treatment regimens or differential design of treatment regimens to alter these potential effects.

2.
Annu Rev Biomed Eng ; 23: 461-491, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33872520

RESUMO

Modeling immunity in vitro has the potential to be a powerful tool for investigating fundamental biological questions, informing therapeutics and vaccines, and providing new insight into disease progression. There are two major elements to immunity that are necessary to model: primary immune tissues and peripheral tissues with immune components. Here, we systematically review progress made along three strategies to modeling immunity: ex vivo cultures, which preserve native tissue structure; microfluidic devices, which constitute a versatile approach to providing physiologically relevant fluid flow and environmental control; and engineered tissues, which provide precise control of the 3D microenvironment and biophysical cues. While many models focus on disease modeling, more primary immune tissue models are necessary to advance the field. Moving forward, we anticipate that the expansion of patient-specific models may inform why immunity varies from patient to patient and allow for the rapid comprehension and treatment of emerging diseases, such as coronavirus disease 2019.


Assuntos
COVID-19/imunologia , Engenharia Tecidual/métodos , Imunidade Adaptativa , Animais , Biofísica , Humanos , Sistema Imunitário , Imunidade Inata , Técnicas In Vitro , Dispositivos Lab-On-A-Chip , Linfócitos/imunologia , Macrófagos/imunologia , Camundongos , Microfluídica , SARS-CoV-2 , Timo/imunologia , Análise Serial de Tecidos
3.
Lab Chip ; 19(6): 1013-1026, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30742147

RESUMO

Experimentally accessible tools to replicate the complex biological events of in vivo organs offer the potential to reveal mechanisms of disease and potential routes to therapy. In particular, models of inter-organ communication are emerging as the next essential step towards creating a body-on-a-chip, and may be particularly useful for poorly understood processes such as tumor immunity. In this paper, we report the first multi-compartment microfluidic chip that continuously recirculates a small volume of media through two ex vivo tissue samples to support inter-organ cross-talk via secreted factors. To test on-chip communication, protein release and capture were quantified using well-defined artificial tissue samples and model proteins. Proteins released by one sample were transferred to the downstream reservoir and detectable in the downstream sample. Next, the chip was applied to model the communication between a tumor and a lymph node, to test whether on-chip dual-organ culture could recreate key features of tumor-induced immune suppression. Slices of murine lymph node were co-cultured with tumor or healthy tissue on-chip with recirculating media, then tested for their ability to respond to T cell stimulation. Interestingly, lymph node slices co-cultured with tumor slices appeared more immunosuppressed than those co-cultured with healthy tissue, suggesting that the chip may successfully model some features of tumor-immune interaction. In conclusion, this new microfluidic system provides on-chip co-culture of pairs of tissue slices under continuous recirculating flow, and has the potential to model complex inter-organ communication ex vivo with full experimental accessibility of the tissues and their media.


Assuntos
Dispositivos Lab-On-A-Chip , Linfonodos/metabolismo , Animais , Complexo CD3/imunologia , Comunicação Celular , Movimento Celular , Técnicas de Cocultura , Feminino , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Microfluídica/instrumentação , Microfluídica/métodos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA